Drag coefficient for plate perpendicular to airflow

AI Thread Summary
The drag coefficient for a flat plate perpendicular to airflow is typically between 1.98 and 2.05, as noted in the discussion. The specific dimensions of the plate (b/h ratio of 5.197) do not significantly alter this coefficient, especially since the flow conditions are primarily pressure drag. The Reynolds number is less critical for this configuration, as the flow will create vortex streets regardless of whether it is laminar or turbulent. For accurate results, consulting references with similar measurements is recommended. Overall, the established drag coefficient range remains applicable for the described scenario.
cxcxcx0505
Messages
26
Reaction score
0
http://en.wikipedia.org/wiki/Drag_coefficient
from wikipedia, it is written 1.98-2.05 for flat plate perpendicular to flow(2D) , but I have a differrent b/h ratio plate, where h=157mm and b=816mm , b/h=5.197

how to get the drag coefficient in this case?

Thanks.
 
Engineering news on Phys.org
What are your flow conditions?

Laminar? Turbulent?

Are we just talking about ambient air? or God blowing on the plate... =)

Give me the Reynolds number and I can help you out.

Cheers =)
 
For a plate perpendicular to the flow the reynolds number will not matter much. That wikipedia page gave a Cd for a 3d flat plate and you will probably be ok using that. Otherwise there is not an easy way to figure this out, your best bet would be to find some reference with similar measurements
 
harrisiqbal said:
What are your flow conditions?

Laminar? Turbulent?

Are we just talking about ambient air? or God blowing on the plate... =)

Give me the Reynolds number and I can help you out.

Cheers =)

Given that this is going to be entirely pressure drag, the state of the flow (laminar vs. turbulent) won't matter a bit. The only thing that could potentially play a role in would be the nature of the vortices that would be shed behind the plate, but the aft side is going to be massively separated and emitting vortex streets regardless.
 
Apologies,

Did not properly read OPs question. I thought he was talking about parallel flow on plate.

Whoops =)
 
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Back
Top