E-field between insulator and conductor

AI Thread Summary
The discussion revolves around calculating the electric field (E-field) between a grounded conductor and an insulating slab above it, both extending infinitely. The conductor induces a negative charge density on its surface due to the positive charge density of the insulator. The participant attempts to use the principle of superposition to find the total E-field by separately calculating the contributions from the conductor and the insulator. However, they encounter a problem when the E-field below the conductor appears to be non-zero, which contradicts the expected behavior of a grounded conductor. They seek clarification on whether the principle of superposition applies in this scenario and how to correctly approach the problem.
ross
Messages
4
Reaction score
0

Homework Statement



I have a slab of conductor on the ground with thickness, a, and it extends in all directions infinitely. Then I have a slab of insulator above the conductor of thickness, a, and it also extends infinitely in all directions. The two slabs are a distance, 2a, from each other. The conductor is grounded. The insulator has some charge density p. It induces a charge density of -pa on the top surface of the conductor. The bottom surface of the conductor has zero charge density. The question assumes the E-field is always in the z-direction, and asks for the E-field for all values of z. Note that the situation is in electrostatic equilibrium.

Homework Equations



none really..

The Attempt at a Solution



I decided to split up the question into two parts: find the E-field due to the conductor for all z values, assuming the insulator isn't there.. then find the E-field due to the insulator, assuming the conductor isn't there.. then by the principle of super-position, add them up, and have the answer.

For conductors I know that eE = D, where e is epsilon, E is the E-field strength, and D is the surface charge density. So above the conductor, the E-field is E = (-pa)/e pointing up. The E-field within and below the conductor is zero.

For the insulator, I found the E-field above it to be E = (pa)/(2e) pointing up, below the insulator to be E = (-pa)/(2e), and within the insulator to be E = (p(z - 3.5a))/(e) pointing up.

My main question is in regards to below the conductor, because when I add up the E-fields generated by both the insulator and conductor, I get an E-field below the conductor, which I know is not possible. Is there some concept I'm missing here? Does the principle of superposition not work here? Maybe it's because the conductor is grounded? If possible, could you start me down the correct path for sovling this..? or just correct where I went wrong?

Thanks a bunch.
 
Physics news on Phys.org
Anyone know?
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top