VinnyCee
- 486
- 0
(a) Using nodal analysis, determine i_0 in the circuit.
(b) Now use linearity to find i_0.
Work so far:
i_0\,=\,\frac{v_1\,-\,0}{6\,\ohm}\,=\,\frac{v_1}{6\,\ohm}
KCL@v_1: \frac{v_1\,-\,0}{3\,\ohm}\,+\,\frac{v_1\,-\,0}{6\,\ohm}\,+\,\frac{v_1\,-\,v_2}{2\,\ohm}\,=\,0
KCL@v_2: \frac{v_2\,-\,v_1}{2\,\ohm}\,+\,\frac{v_2\,-\,0}{4\,\ohm}\,+\,9A\,=\,0
v_1\,-\,\frac{1}{2}\,v_2\,=\,0
-\,\frac{1}{2}\,v_1\,+\,\frac{3}{4}\,v_2\,=\,-9
Whe I put these two equaitons into a 3 X 2 coefficient matrix, I get
v_1\,=\,-\,9V
v_2\,=\,-\,18V
Then I plug into the first equation:
i_0\,=\,\frac{v_1}{6\,\ohm}\,=\,\frac{(-\,9V)}{6\,\ohm}\,=\,-\,\frac{3}{2}A
Is this the correct value for i_0 or have I got the sign wrong?
(b) Now use linearity to find i_0.
Work so far:
i_0\,=\,\frac{v_1\,-\,0}{6\,\ohm}\,=\,\frac{v_1}{6\,\ohm}
KCL@v_1: \frac{v_1\,-\,0}{3\,\ohm}\,+\,\frac{v_1\,-\,0}{6\,\ohm}\,+\,\frac{v_1\,-\,v_2}{2\,\ohm}\,=\,0
KCL@v_2: \frac{v_2\,-\,v_1}{2\,\ohm}\,+\,\frac{v_2\,-\,0}{4\,\ohm}\,+\,9A\,=\,0
v_1\,-\,\frac{1}{2}\,v_2\,=\,0
-\,\frac{1}{2}\,v_1\,+\,\frac{3}{4}\,v_2\,=\,-9
Whe I put these two equaitons into a 3 X 2 coefficient matrix, I get
v_1\,=\,-\,9V
v_2\,=\,-\,18V
Then I plug into the first equation:
i_0\,=\,\frac{v_1}{6\,\ohm}\,=\,\frac{(-\,9V)}{6\,\ohm}\,=\,-\,\frac{3}{2}A
Is this the correct value for i_0 or have I got the sign wrong?