Efficient Integration: Solving an Integral with Constant Variables

  • Thread starter Thread starter rusty009
  • Start date Start date
  • Tags Tags
    Integral
rusty009
Messages
68
Reaction score
0
Hey, I need to integrate this and I am having troubles with it, here it is

\int e^((2*pi*j*f*t)-((f^2)/k))) df

the integral is with respect to f, you can take j,t and k as normal numbers as they will be constant. Thanks for the help.
 
Last edited:
Physics news on Phys.org
Do you mean \int e^{2\pi jft} - \frac{f^2}{k} df?

If so, do you know how to integrate \int e^{kx} \ dx where k is a constant? As well as the power rule for integrals?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top