Efficient Integration: Substitution Method for 2x sec^2(x^2) dx

  • Thread starter Thread starter rugapark
  • Start date Start date
  • Tags Tags
    Integration
rugapark
Messages
22
Reaction score
0
the question is \int 2x sec^2 (x^2) dx

do i sub u= sec (x^2) ?

I so far have got to trying to sub u= sec(x^2) and getting du= 2 (sec x^2 tan x^2)... i have a strong feeling i fudged the "du" part. hmm.
 
Physics news on Phys.org
u=x^2

du=2xdx which you have! What is the anti-derivative of \sec^2 x ?
 
oh right, so I've got du=2xdx,

intergral sec^2 u du

= tan u + c

sub back u=x^2

=tan x^2 +c

how does that look?
 
It looks just fine.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top