FrogPad
- 801
- 0
In my emag course we are reviewing vector calculus. I've forgotton a lot over the summer, so I just want to make sure I'm doing this properly.
question)
\vec E = \hat x y + \hat y x
Evaluate \int \vec E \cdot d\vec l from P_1(2,1,-1) to P_2(8,2,-1) along the parabola x = 2y^2.
sol)
We are in cartesian coordinates, thus:
d\vec l = \hat x dx + \hat y dy
\vec E \cdot d\vec l = ydx + xdy
Our path is:
x=2y^2
y=\sqrt{\frac{x}{2}}
Thus,
\int_2^8 \sqrt{\frac{x}{2}}\,\,dx + \int_1^2 2y^2 \,\,dy = \frac{28}{3}+\frac{14}{3}=14Does everything look ok?
question)
\vec E = \hat x y + \hat y x
Evaluate \int \vec E \cdot d\vec l from P_1(2,1,-1) to P_2(8,2,-1) along the parabola x = 2y^2.
sol)
We are in cartesian coordinates, thus:
d\vec l = \hat x dx + \hat y dy
\vec E \cdot d\vec l = ydx + xdy
Our path is:
x=2y^2
y=\sqrt{\frac{x}{2}}
Thus,
\int_2^8 \sqrt{\frac{x}{2}}\,\,dx + \int_1^2 2y^2 \,\,dy = \frac{28}{3}+\frac{14}{3}=14Does everything look ok?
Last edited: