TranscendArcu
- 277
- 0
Homework Statement
My instructor wants me to only solve for the case m=2.
The Attempt at a Solution
So I thought I should discover what T does to the standard basis for matrices of size 2x2:
T \left| \begin{array}{cc}<br /> 1 &0 \\<br /> 0&0 \end{array} \right| = \left| \begin{array}{cc}<br /> 1 &0 \\<br /> 0&0 \end{array} \right|
T \left| \begin{array}{cc}<br /> 0 &1 \\<br /> 0&0 \end{array} \right| =\left| \begin{array}{cc}<br /> 0 &0 \\<br /> 1&0 \end{array} \right|
T \left| \begin{array}{cc}<br /> 0 &0 \\<br /> 1&0 \end{array} \right| =\left| \begin{array}{cc}<br /> 0 &1 \\<br /> 0&0 \end{array} \right|
T \left| \begin{array}{cc}<br /> 0 &0 \\<br /> 0&1 \end{array} \right| =\left| \begin{array}{cc}<br /> 0 &0 \\<br /> 0&1 \end{array} \right|
At this point do I have to create a matrix consisting of these transformed matrices in order to find Δ_T (t) = det(M - tI)? I'm kind of confused about my next step.