wil3
- 177
- 1
Hello, I have a feeling that the solution to this question is going to be incredibly obvious, so my apologies if this turns out to be really dumb. How do I solve the following eigenvalue problem:
<br /> <br /> \begin{bmatrix}<br /> \partial_x^2 + \mu + u(x) & u(x)^2 \\<br /> \bar{u(x)}^2 & \partial_x^2 + \mu + u(x)<br /> \end{bmatrix}<br /> \begin{bmatrix}<br /> a(x)\\<br /> b(x)<br /> \end{bmatrix}<br /> =<br /> \omega(x)<br /> \begin{bmatrix}<br /> a(x)\\<br /> b(x)<br /> \end{bmatrix}<br />
where all x dependencies have been declared. I know the definition of the function u(x), but I need to solve for the eigenfrequency and eigenvectors.
<br /> <br /> \begin{bmatrix}<br /> \partial_x^2 + \mu + u(x) & u(x)^2 \\<br /> \bar{u(x)}^2 & \partial_x^2 + \mu + u(x)<br /> \end{bmatrix}<br /> \begin{bmatrix}<br /> a(x)\\<br /> b(x)<br /> \end{bmatrix}<br /> =<br /> \omega(x)<br /> \begin{bmatrix}<br /> a(x)\\<br /> b(x)<br /> \end{bmatrix}<br />
where all x dependencies have been declared. I know the definition of the function u(x), but I need to solve for the eigenfrequency and eigenvectors.