PFStudent
- 169
- 0
Homework Statement
13. In. Fig. 21-26, particle 1 of charge +1.0 \muC and particle 2 of charge -3.0 \muC are held at separation of L = 10.0 cm on an x axis. If particle 3 of known charge q_{3} is to be located such that the net electrostatic force on it from particles 1 and 2 is zero, what must be the
(a) x and
(b) y coordinates?
http://img329.imageshack.us/img329/3658/physicsj1bz9.jpg
Homework Equations
Coulomb's Law
Vector Form:
<br /> \vec{F}_{12} = \frac{k_{e}q_{1}q_{2}}{r^2}\hat{r}_{12}<br />
Scalar Form:
<br /> |\vec{F}_{12}| = \frac{k_{e}|q_{1}||q_{2}|}{r^2}<br />
The Attempt at a Solution
q_{1} = +1.0 x 10^{-6} C
q_{2} = -3.0 x 10^{-6} C
L = 0.100 m
x = ?
y = ?[/tex]<br /> <br /> There can only be two possible scenarios,<br /> <br /> Scenario A<br /> <br /> http://img266.imageshack.us/img266/8128/physicsjabc5.jpg <br /> <br /> and<br /> <br /> Scenario B<br /> <br /> http://img266.imageshack.us/img266/1875/physicsjbuh1.jpg <br /> <br /> The reason that charge q_{3} can not be between charges q_{1} and q_{2} is because the forces would not balance each other but instead would add vectorally in the same direction, and therefore the net force on charge q_{3} would not be zero.<br /> <br /> Beginning with scenario A, <br /> <br /> <br /> |\vec{F_{31}}| = |\vec{F_{32}}|<br /><br /> <br /> <b>r_{31} = L+x and r_{32} = x</b><br /> <br /> <br /> \frac{k_{e}|q_{3}||q_{1}|}{r_{31}^2} = \frac{k_{e}|q_{3}||q_{2}|}{r_{32}^2}<br /><br /> <br /> <br /> \frac{|q_{1}|}{(L+x)^2} = \frac{|q_{2}|}{(x)^2}<br /><br /> <br /> Solving for x, <br /> <br /> <br /> x = \frac{-L}{1\mp\sqrt{\frac{|q_{1}|}{|q_{2}|}}}<br /><br /> <br /> And evaluating for x with sig. fig. \equiv 2,<br /> <br /> <b>x = -0.24 m, -0.06 m</b><br /> <br /> Continuing with scenario B, <br /> <br /> <br /> |\vec{F_{31}}| = |\vec{F_{32}}|<br /><br /> <br /> <b>r_{31} = x and r_{32} = L+x</b><br /> <br /> <br /> \frac{k_{e}|q_{3}||q_{1}|}{r_{31}^2} = \frac{k_{e}|q_{3}||q_{2}|}{r_{32}^2}<br /><br /> <br /> <br /> \frac{|q_{1}|}{(x)^2} = \frac{|q_{2}|}{(L+x)^2}<br /><br /> <br /> Solving for x, <br /> <br /> <br /> x = \frac{\pm L\sqrt{\frac{|q_{1}|}{|q_{2}|}}}{1\mp\sqrt{\frac{|q_{1}|}{|q_{2}|}}}<br /><br /> <br /> Now simplifying by factoring out a \mp out of the denominator, <br /> <br /> <br /> x = \frac{\pm L\sqrt{\frac{|q_{1}|}{|q_{2}|}}}{\mp\left(\mp1+\sqrt{\frac{|q_{1}|}{|q_{2}|}}\right)}<br /><br /> <br /> Now noting that the following is true, <br /> <br /> <br /> \frac{\pm}{\mp} = \frac{+}{-} or \frac{-}{+} = -<br /><br /> <br /> Our equation simplifies to<br /> <br /> <br /> x = \frac{-L\sqrt{\frac{|q_{1}|}{|q_{2}|}}}{\left(\mp1+\sqrt{\frac{|q_{1}|}{|q_{2}|}}\right)}<br /><br /> <br /> <br /> x = \frac{-L\sqrt{\frac{|q_{1}|}{|q_{2}|}}}{\sqrt{\frac{|q_{1}|}{|q_{2}|}}\mp1}<br /><br /> <br /> And evaluating for x with sig. fig. \equiv 2,<br /> <br /> <b>x = +0.14 m, -0.04 m</b><br /> <br /> Therefore, of scenarios A and B there are four possible answers, <br /> <br /> A: <b>x = -0.24 m, -0.06 m</b><br /> B: <b>x = +0.14 m, -0.04 m</b><br /> <br /> The book lists, x = 0.14 m as the answer, but that can’t be the only answer as that <u>only</u> fits with scenario B.<br /> <br /> Then, if x= 0.14 m is the only answer what <u>justifies</u> it to be so out of all the other solutions, is it because it is the only positive solution?<br /> What is the other answer for scenario A?<br /> And the answer for scenario B (x = 0.14m) seems to fit more with scenario A, then why did I not get this answer while solving for solutions in scenario A?<br /> <br /> Are the other solutions for x real solutions to this problem?<br /> <br /> Thanks,<br /> -PFStudent
Last edited by a moderator: