Electric Dipole derivation (Algebra)

AI Thread Summary
The discussion focuses on deriving the electric field equation for an electric dipole. The initial expression for the electric field is given, and the goal is to manipulate it into a specific form. The user successfully finds a common denominator and simplifies the expression but encounters difficulty in further simplification. They express frustration with the complexity of working backwards to reach the desired form. The conversation highlights the challenges of algebraic manipulation in physics problems, particularly in the context of electric dipoles.
DrummingAtom
Messages
657
Reaction score
2

Homework Statement



Show that

E = \frac {q}{4\pi\varepsilon(z-\frac{1}{2}d)^2} - \frac{q}{4\pi\varepsilon(z+\frac{1}{2}d)^2}<br />

is

E = \frac {q}{4\pi\varepsilon z^2} [(1-\frac{d}{2z})^{-2} - (1+\frac{d}{2z})^{-2}]



Homework Equations





The Attempt at a Solution



After getting a common denominator and subtracting I got

\frac {2qdz}{4\pi\varepsilon(z^4-\frac{1}{2}d^2z^2+\frac{1}{16}d^4)}

Stuck completely at this point. I've tried working backwards but that is even more confusing. Any help would be appreciated. Thanks.
 
Physics news on Phys.org
<br /> E = \frac {q}{4\pi\varepsilon(z-\frac{1}{2}d)^2} - \frac{q}{4\pi\varepsilon(z+\frac{1}{2}d)^2}<br />

<br /> E = \frac {q}{4\pi\varepsilon}[(z-\frac{1}{2}d)^{-2}} - (z+\frac{1}{2}d)^{-2}}]<br />

<br /> E = \frac {q}{4\pi\varepsilon}[(z(1-\frac{d}{2z}))^{-2}} - (z(1+\frac{d}{2z}))^{-2}}]<br />

<br /> E = \frac {q}{4\pi\varepsilon}[z^{-2}(1-\frac{d}{2z})^{-2}} - z^{-2}(1+\frac{d}{2z})^{-2}}]<br />

<br /> E = \frac {q}{4\pi\varepsilon z^2} [(1-\frac{d}{2z})^{-2} - (1+\frac{d}{2z})^{-2}]<br />
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top