Electric Energy and Spring Constant Problem

AI Thread Summary
The problem involves two charged spheres on springs, initially spaced 0.0500 m apart, which double their distance when charged. The relevant equations include energy conservation and potential energy for springs and electric forces. The discussion highlights the challenge of calculating the spring constant due to the lack of mass information and the need for electric potential energy. A solution is proposed using the force equation for electric interaction and spring force, leading to a calculated spring constant of approximately 920.8 N/m. The conversation emphasizes the importance of understanding energy concepts and the application of algebraic physics to solve the problem.
imbroglio
Messages
5
Reaction score
0

Homework Statement


Two spheres are mounted on identical horizontal springs and rest on a frcionless table, as in the drawing. When the spheres are uncharged, the spacing between them is 0.0500 m, and the springs are unrestrained. When each sphere has a charge of +1.60 microC, the spacing doubles. Assuming that the spheres have a negligible diameter, determine the spring constant of the springs.

Homework Equations



E=KE_t+KE_r+U_g+PE_sp+PE_e

Energy is equal to the sum of all energies, translational kinetic, rotational kinetic, gravitational potentional, potential spring, and potential electric.

Potential gravitational and Rotaional Kinetic are not applicable

KE_t=(1/2mv^2)
PE_sp=(1/2)kx^2
PE_e=[k(q_1)(q_2)]/r^2

The Attempt at a Solution



E=KE_t+PE_sp+PE_e
Ef=[(1/2)m_1f V_1f^2 +(1/2)M_2f V_2f^2]+[1/2kx_f^2]+[(k_e)(q^2)]/r_f^2]

Ei=0+[1/2kx_i^2]+[(k_e)(q^2)]/r_i^2]

Ef=Ei
[(1/2)m_1f V_1f^2 +(1/2)M_2f V_2f^2]+[1/2kx_f^2]+[(k_e)(q^2)]/r-f^2]=[1/2kx_i^2]+[(k_e)(q^2)]/ri^2]

(1/2)[m_1f V_1f^2 +M_2f V_2f^2]+[kx_f^2]+[(2k_e)(q^2)]/rf^2]= (1/2)[Kx_i^2]+[(2k_e)(q^2)]/r_i^2]

(m1=m2)

[mf Vf^2]+[kx_f^2]+[(2k_e)(q^2)]/rf^2]=[(2k_e)(q^2)]/r_i^2]

Mv^2+x_f^2+(1/r_f^2)=(1/r_i^2)

So then...

(1/2) [m_1v_1f^2+m_2v_2f^2]+Kx_f^2+[(k_e)(q^2)]/r^2]=0

K=-[[k_e(q^2)/r^2]-[mv_f^2]]/x^2

K=-[(8.99e9)(2.56e6)]/(.01)]-m(1.73^2)

k=-29.929(x+7.689)

and I'm stuck...I don't know what I did wrong really...I don't know how to find the mass though...

Thanks!
 
Physics news on Phys.org
Consider only one of the spheres. When the electric force pushes on it it does a certain amount of work, right? You could figure that out through integration (or if you don't know any calculus, I'm sure there is some formula you could use). Set that equal to the increase in potential energy in one of the springs and youve got your answer.
 
That sounds like a fantastic idea. However, with my lack of knowledge in calculus and the limitations of algebra, I cannot find the EPE. It is not given in the problem. In algebra we only know EPE to be EPE=qV...the voltage is not given in the problem.

In addition, this chapter of which the homework is assigned, does not cover EPE. Thus, there must be an alternative solution...any ideas?

Thanks for your help though, I do appreciate it :)
 
My friend from school enlightened me on this matter and it is properly performed with algebraic physics as follows.

F=(kq_1q_2)/r^2

K=(1/4piE_o) when E_0=8.85e-12

F=[(K(1.6e-6)^20/(0.1^2)]
F=2.302

F=k_spx^2
K=(f/x^2)
K=(2.302/0.0025)
K=920.8

yay
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top