Electric Energy and Spring Constant Problem

AI Thread Summary
The problem involves two charged spheres on springs, initially spaced 0.0500 m apart, which double their distance when charged. The relevant equations include energy conservation and potential energy for springs and electric forces. The discussion highlights the challenge of calculating the spring constant due to the lack of mass information and the need for electric potential energy. A solution is proposed using the force equation for electric interaction and spring force, leading to a calculated spring constant of approximately 920.8 N/m. The conversation emphasizes the importance of understanding energy concepts and the application of algebraic physics to solve the problem.
imbroglio
Messages
5
Reaction score
0

Homework Statement


Two spheres are mounted on identical horizontal springs and rest on a frcionless table, as in the drawing. When the spheres are uncharged, the spacing between them is 0.0500 m, and the springs are unrestrained. When each sphere has a charge of +1.60 microC, the spacing doubles. Assuming that the spheres have a negligible diameter, determine the spring constant of the springs.

Homework Equations



E=KE_t+KE_r+U_g+PE_sp+PE_e

Energy is equal to the sum of all energies, translational kinetic, rotational kinetic, gravitational potentional, potential spring, and potential electric.

Potential gravitational and Rotaional Kinetic are not applicable

KE_t=(1/2mv^2)
PE_sp=(1/2)kx^2
PE_e=[k(q_1)(q_2)]/r^2

The Attempt at a Solution



E=KE_t+PE_sp+PE_e
Ef=[(1/2)m_1f V_1f^2 +(1/2)M_2f V_2f^2]+[1/2kx_f^2]+[(k_e)(q^2)]/r_f^2]

Ei=0+[1/2kx_i^2]+[(k_e)(q^2)]/r_i^2]

Ef=Ei
[(1/2)m_1f V_1f^2 +(1/2)M_2f V_2f^2]+[1/2kx_f^2]+[(k_e)(q^2)]/r-f^2]=[1/2kx_i^2]+[(k_e)(q^2)]/ri^2]

(1/2)[m_1f V_1f^2 +M_2f V_2f^2]+[kx_f^2]+[(2k_e)(q^2)]/rf^2]= (1/2)[Kx_i^2]+[(2k_e)(q^2)]/r_i^2]

(m1=m2)

[mf Vf^2]+[kx_f^2]+[(2k_e)(q^2)]/rf^2]=[(2k_e)(q^2)]/r_i^2]

Mv^2+x_f^2+(1/r_f^2)=(1/r_i^2)

So then...

(1/2) [m_1v_1f^2+m_2v_2f^2]+Kx_f^2+[(k_e)(q^2)]/r^2]=0

K=-[[k_e(q^2)/r^2]-[mv_f^2]]/x^2

K=-[(8.99e9)(2.56e6)]/(.01)]-m(1.73^2)

k=-29.929(x+7.689)

and I'm stuck...I don't know what I did wrong really...I don't know how to find the mass though...

Thanks!
 
Physics news on Phys.org
Consider only one of the spheres. When the electric force pushes on it it does a certain amount of work, right? You could figure that out through integration (or if you don't know any calculus, I'm sure there is some formula you could use). Set that equal to the increase in potential energy in one of the springs and youve got your answer.
 
That sounds like a fantastic idea. However, with my lack of knowledge in calculus and the limitations of algebra, I cannot find the EPE. It is not given in the problem. In algebra we only know EPE to be EPE=qV...the voltage is not given in the problem.

In addition, this chapter of which the homework is assigned, does not cover EPE. Thus, there must be an alternative solution...any ideas?

Thanks for your help though, I do appreciate it :)
 
My friend from school enlightened me on this matter and it is properly performed with algebraic physics as follows.

F=(kq_1q_2)/r^2

K=(1/4piE_o) when E_0=8.85e-12

F=[(K(1.6e-6)^20/(0.1^2)]
F=2.302

F=k_spx^2
K=(f/x^2)
K=(2.302/0.0025)
K=920.8

yay
 
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top