Electric field and total charge

AI Thread Summary
The discussion revolves around calculating the total charge and electric field for a cylinder with a charge density proportional to the distance from its central axis. For part (a), confusion arises regarding the correct expression for total charge, with participants debating whether to use volume or surface area in their calculations. In parts (b) and (c), there is uncertainty about the electric field inside and outside the cylinder, with references to cylindrical symmetry and Gauss' Law. The participants explore integrating the charge density and the implications of the cylinder's length on the calculations. Overall, the conversation highlights the complexities of applying theoretical concepts to practical problems in electrostatics.
uchicago2012
Messages
74
Reaction score
0

Homework Statement


Charge is distributed through an infinitely long cylinder of radius R in such a way that the charge density is proportional to the distance from the central axis: ß = A r, where A is a constant and ß is the density.
(a) Calculate the total charge contained in a segment of the cylinder of length L.
(b) Calculate the electric field for points outside the cylinder.
(c) Calculate the electric field for points inside the cylinder.

Homework Equations


Gauss' Law

The Attempt at a Solution


so for a)
dQ = p(r) V dr
right? or is it
dQ = p(r) A dr
I can't decide. It says charge is distributed throughout the cylinder but in my book we always seem to use surface areas so I'm confused.
But if I go with my first equation and integrate to find the total charge, Q
Q = integral (A * r * pi * R2 * L * dr)
where r = distance of point from central axis and R = radius of cylinder
then = A * pi * R2 * L * integral r dr
which = (A * pi * R4 * L)/2
I integrated from 0 to R which leaves out half of the cylinder so I'm not so sure what to do about that... should I integrate to 2R intsead?
As far as for b and c, I can't see why they'd be different. My book talks about cylindrical symmetry and says
E = linear charge density/(2 * pi *e0 * r)
which is the electric field E due to an infinitely long, straight line of charge, at a point that is a radial distance r from the line. So wouldn't they be the same, with different r's? Perhaps for the one inside the surface, the density B = A * r would cancel with the r on the bottom. Or instead of this equation, should I go back and say:
e0 * E * A = q
and use my q from before, if it's even right?
And should I use the area or the volume then, for this part?

Ugh this electric stuff confuses me. I miss gravity...
 
Physics news on Phys.org
ß = A r tells density at any part at distance x from central axis.
this charge at x will be distributed along the circumference of that little part dx at distnce x

so dQ = dx * ß
where B will be A xwhat is that p(r) ?
 
p(r) is density as a function of r. Sorry I switched the symbols, I'm used to using rho. So is r a constant then? I thought it was a variable, because it said A was a constant and B was the density, so I thought B varied in accordance with r, which would be the distance from the central axis. Then the R would be the actual radius of the cylinder. But you think it's a constant?
 
i didnt say its a constant ... did i?

i just used the expression to find charge dQ at distance x, now x is variable ...(thats why eqn include dx)

and dint worry about the radius stuff ... density given is linear
 
Right, I see. So then Q = Ax2/2. But what does length L have to do with the integral? X is the distance from the central axis, so I don't see how to incorporate L into that.
 
what will be the limits of integral?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top