Electric Field in an Infinitely Long Cylinder

  • Thread starter Thread starter skiboka33
  • Start date Start date
  • Tags Tags
    Cylinder
skiboka33
Messages
59
Reaction score
0
Here's the problem:

An infinately long cylinder of radius R has a volume charge density that varies with the radius as p = p0(a-r/b) where p0, a and b are all positive constants amd r is the distance from the axis of the cylinder. Use Gauss' law to determine the magnitude of the electric field at r<R and r>R.

here's my logic for r < R:

E = k * int[p*dV/r] = k*p0*int[(a-r/b)*dV/r]
-Then sub in V=Pi*r^2*L (solved for r and integrate wrt V)

but what is this L if it's infinate. Also what is the difference being inside or outside of the cylinder? is it just the limits of integration (ie 0-R, or R-r)?

Thanks.
 
Physics news on Phys.org
Symmetry tells you the electric field is radial and azimuthally symmetric. Gauss' Law relates the flux of electric field through a closed surface and the amount of charge contained therein. Rethink your approach! :)
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top