Electric Fields Question- Uniform Field

r34racer01
Messages
62
Reaction score
0
showmepl-6.gif


Throughout space there is a uniform electric field in the -y direction of strength E = 540 N/C. There is no gravity. At t = 0, a particle with mass m = 3 g and charge q = -17 µC is at the origin moving with a velocity v0 = 25 m/s at an angle θ = 25° above the x-axis.

(a) What is the magnitude of the force acting on this particle?
F = 0.00918N

(b) At t = 6.5 s, what are the x- and y-coordinates of the position of the particle?
x = ? y = ?
HELP: Recall and apply the kinematic expressions for 2-D projectile motion from mechanics.


E = F/Q = (KQ)/r^2
Range = (vo^2*sin(2Θ))/g
Trajectory = x*tan(Θ)-(1/2)((g*x^2)/(vo^2*cos^2(Θ))
v = vo+at
x = xo + v0t+(1/2)at^2
v^2-vo^2 = 2a(x-xo)


Ok pt a.) was really easy but I'm completely stuck on part b. It says to use kinematics equations but I don't see how that can work. We're not given acceleration and we're told gravity is not acting on the particle, and we don't know the speed at t=6.5s. I thought maybe I could set the force from pt a equal to m*a and that gave me 3.06 but the coordinates I got were not correct. Am I suppose to assume that the acceleration is zero since the electric force field is constant?
 
Physics news on Phys.org
Hi

acceleration is Force divided by mass

Best regards
 
r34racer01 said:
showmepl-6.gif


Throughout space there is a uniform electric field in the -y direction of strength E = 540 N/C. There is no gravity. At t = 0, a particle with mass m = 3 g and charge q = -17 µC is at the origin moving with a velocity v0 = 25 m/s at an angle θ = 25° above the x-axis.

(a) What is the magnitude of the force acting on this particle?
F = 0.00918N

(b) At t = 6.5 s, what are the x- and y-coordinates of the position of the particle?
x = ? y = ?
HELP: Recall and apply the kinematic expressions for 2-D projectile motion from mechanics.


E = F/Q = (KQ)/r^2
Range = (vo^2*sin(2Θ))/g
Trajectory = x*tan(Θ)-(1/2)((g*x^2)/(vo^2*cos^2(Θ))
v = vo+at
x = xo + v0t+(1/2)at^2
v^2-vo^2 = 2a(x-xo)


Ok pt a.) was really easy but I'm completely stuck on part b. It says to use kinematics equations but I don't see how that can work. We're not given acceleration and we're told gravity is not acting on the particle, and we don't know the speed at t=6.5s. I thought maybe I could set the force from pt a equal to m*a and that gave me 3.06 but the coordinates I got were not correct. Am I suppose to assume that the acceleration is zero since the electric force field is constant?

You calculated a Force. YOu have the mass of the particle, so F = ma... Just got to get the direction of the net force, thus the acceleration correct. Then use your kinematics. But don't use g, use the a you found from F=ma..

whoops, answered above.
 
Ok well like I said before I tried F = ma => 0.00918 = 0.003kg * a => a = 3.06 m/s^2. I then did x = x0+v0*t + 0.5*a*t^2 ==> x = 0 + 25(6.5) + 0.5(3.06)(6.5)^2 = 227.1425. I then resolved this into x and y components and got x = 205.86 and y = 95.9. These didn't work so I'm still lost.
 
v0 is a vector doing 25º
E (and therefore F) is a vector going in the y direction.

You must find the velocity in the x and y component, the force in the x and y component (in this case the x component of the force is 0), and apply kinematic's equation on each component.
Hope this helps
 
Last edited:
The only difference form the classical projectile problem is that the gravitational field is replaced by the electrostatic field, they obey the same laws, only the expression of the force is different(G = mg for gravity, F = qE in this case, F plays the role of G).
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top