Electric Fields Question- Uniform Field

AI Thread Summary
A uniform electric field of 540 N/C in the -y direction affects a particle with a mass of 3 g and a charge of -17 µC, initially moving at 25 m/s at a 25° angle. The force acting on the particle is calculated to be 0.00918 N. To find the particle's position at t = 6.5 s, the correct approach involves determining the acceleration from the force and using kinematic equations for both x and y components. The acceleration is derived from F = ma, yielding 3.06 m/s², which must then be applied separately to the x and y motion. The discussion emphasizes that the electric field replaces gravitational effects, allowing for similar kinematic principles to be applied.
r34racer01
Messages
62
Reaction score
0
showmepl-6.gif


Throughout space there is a uniform electric field in the -y direction of strength E = 540 N/C. There is no gravity. At t = 0, a particle with mass m = 3 g and charge q = -17 µC is at the origin moving with a velocity v0 = 25 m/s at an angle θ = 25° above the x-axis.

(a) What is the magnitude of the force acting on this particle?
F = 0.00918N

(b) At t = 6.5 s, what are the x- and y-coordinates of the position of the particle?
x = ? y = ?
HELP: Recall and apply the kinematic expressions for 2-D projectile motion from mechanics.


E = F/Q = (KQ)/r^2
Range = (vo^2*sin(2Θ))/g
Trajectory = x*tan(Θ)-(1/2)((g*x^2)/(vo^2*cos^2(Θ))
v = vo+at
x = xo + v0t+(1/2)at^2
v^2-vo^2 = 2a(x-xo)


Ok pt a.) was really easy but I'm completely stuck on part b. It says to use kinematics equations but I don't see how that can work. We're not given acceleration and we're told gravity is not acting on the particle, and we don't know the speed at t=6.5s. I thought maybe I could set the force from pt a equal to m*a and that gave me 3.06 but the coordinates I got were not correct. Am I suppose to assume that the acceleration is zero since the electric force field is constant?
 
Physics news on Phys.org
Hi

acceleration is Force divided by mass

Best regards
 
r34racer01 said:
showmepl-6.gif


Throughout space there is a uniform electric field in the -y direction of strength E = 540 N/C. There is no gravity. At t = 0, a particle with mass m = 3 g and charge q = -17 µC is at the origin moving with a velocity v0 = 25 m/s at an angle θ = 25° above the x-axis.

(a) What is the magnitude of the force acting on this particle?
F = 0.00918N

(b) At t = 6.5 s, what are the x- and y-coordinates of the position of the particle?
x = ? y = ?
HELP: Recall and apply the kinematic expressions for 2-D projectile motion from mechanics.


E = F/Q = (KQ)/r^2
Range = (vo^2*sin(2Θ))/g
Trajectory = x*tan(Θ)-(1/2)((g*x^2)/(vo^2*cos^2(Θ))
v = vo+at
x = xo + v0t+(1/2)at^2
v^2-vo^2 = 2a(x-xo)


Ok pt a.) was really easy but I'm completely stuck on part b. It says to use kinematics equations but I don't see how that can work. We're not given acceleration and we're told gravity is not acting on the particle, and we don't know the speed at t=6.5s. I thought maybe I could set the force from pt a equal to m*a and that gave me 3.06 but the coordinates I got were not correct. Am I suppose to assume that the acceleration is zero since the electric force field is constant?

You calculated a Force. YOu have the mass of the particle, so F = ma... Just got to get the direction of the net force, thus the acceleration correct. Then use your kinematics. But don't use g, use the a you found from F=ma..

whoops, answered above.
 
Ok well like I said before I tried F = ma => 0.00918 = 0.003kg * a => a = 3.06 m/s^2. I then did x = x0+v0*t + 0.5*a*t^2 ==> x = 0 + 25(6.5) + 0.5(3.06)(6.5)^2 = 227.1425. I then resolved this into x and y components and got x = 205.86 and y = 95.9. These didn't work so I'm still lost.
 
v0 is a vector doing 25º
E (and therefore F) is a vector going in the y direction.

You must find the velocity in the x and y component, the force in the x and y component (in this case the x component of the force is 0), and apply kinematic's equation on each component.
Hope this helps
 
Last edited:
The only difference form the classical projectile problem is that the gravitational field is replaced by the electrostatic field, they obey the same laws, only the expression of the force is different(G = mg for gravity, F = qE in this case, F plays the role of G).
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top