Electric Potential Difference in a Uniformly Charged Infinite Cylinder?

ashe540
Messages
1
Reaction score
0
We have a piece of a cylinder of infinite length and radius R, charged with a uniform and positive volumetric density of charge p.
Compute:

a) Difference of electric potential between the axis of the cylinder and its surface.

b) Work to carry a charge q from the axis to the surface of the cylinder. Is this work done by the forces of the electric field, or is it external to the field forces?

c) Compute the electric potential of a point on the surface of the cylinder (this potential could be computed as the difference of potential between such point and the infinite). But this potential can not be computed. Why is it not possible to compute the potential on a point, but it´s possible to compute differences of potential in this problem?a) What I did was using the difference of electric potential formula
*********A******
V(A)-V(B)= ∫ E*dr **
********* B *****

I set the A and B points as 0 (for the axis which I took as the origin) and R as the surface. Then I pulled E out of the integral because it´s constant and integrated dr. I´m not sure if this is the right way about doing it.

b) As for the work I wasn´t sure what to do here. I never have clear which formula to use for which cases. Whether W=qEd or W=q* [V(A)-V(B)]

c) I started thinking about it and I was thinking that maybe it had something to do with the fact that given the formula V=W/Q , that W is not given. Does this have anything to do with it?

Help please, I'm really lost
 
Last edited:
Physics news on Phys.org


where did you get the idea that E was uniform at different radii?
E.A = E 2πrL = 4πk (rho)πr^2L , so the E increases with radius.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top