Electric potential for an axial quadrupole

Telemachus
Messages
820
Reaction score
30
Find the electric potential for an axial quadrupole: point charges q, -2q, q over the z axis at distances l,0,l from the origin. Find the electric potential only for distances r>>l and demonstrate that the potential is proportional to one of the zonal armonics.

Well, I found at wikipedia that an axial multipole has an electric potential given by:
\Phi(r)=\frac{1}{4\pi \epsilon_0 r}\sum_{k=0}^{\infty}qa^k \left ( \frac{1}{r^{k+1}} \right ) P_k(\cos\theta)

But I don't know how to apply this to my problem. I don't know neither what the zonal armonics are.
 
Physics news on Phys.org
Zonal harmonics are functions of the form

φn=rnPn(cosθ) or φn=r-(n+1)Pn(cosθ) where Pn(cosθ) are Legendre polynomials.

In relation to your problem, first find the potential using simple superposition of three point charges, then expand in Taylor series for r>>l. You should get something that matches the functional dependence of one of the two forms. Can you predict which one?
 
Thanks.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top