How Does the Biot-Savart Law Apply to a Square Loop in a Plane?

AI Thread Summary
The discussion focuses on applying the Biot-Savart law to a square loop of wire carrying a steady current, specifically to show that the magnetic field at any point in the plane but outside the loop is perpendicular to that plane. Participants express uncertainty about calculating line integrals involving vector products and suggest using symmetry to simplify the problem. The calculation of the magnetic field at the center of the loop is addressed, with one participant proposing a method involving integration over the loop's sides. Confirmation is given that the proposed method is correct, despite the initial doubts about the integral's complexity. The conversation highlights the challenges faced in understanding and applying the Biot-Savart law in this context.
sebb1e
Messages
34
Reaction score
0

Homework Statement



A square loop of wire C, with side length 2a lies in a plane P and carries a steady electic current I. By using the Biot-Savart law show that the magnetic field B(r) at any point r in P but not in C is perpendicular to the plane P.

Calculate the magnetic field at the centre of the wire.


The Attempt at a Solution



Dotting with a would seem the normal way to do the first bit but I don't think this works so I think it must be to do with the vector product always being 0.

I don't recall ever being taught how to calculate a line integral with a vector product inside it so really not sure where to begin. I expect there is a way to use symmetry to simpliify it.

If my guess is correct then the component of one side of the square (x=a) is going to be (assuming centre is origin):

(u*I/4pi)*(0,0, Integral -a and a of (a/((a^2+(y')^2)^3/2)dy')

I think all 4 sides can be summed to make it 4 times that. I don't really have any idea what I'm doing though so if someone could explain it would be appreciated.
 
Physics news on Phys.org
There is nothing to calculate. Since the law says that: \vec{dB} = C\vec{dl} \times \hat{r}, where C is a constant that contains all the relevant factors, we can see that dB will always be perpnedicular to both dl and r. In this case they both lie on the plane P, so dB is always normal to P.
 
Thanks a lot, what about calculating the magnetic field at the centre?
 
sebb1e said:
If my guess is correct then the component of one side of the square (x=a) is going to be (assuming centre is origin):

(u*I/4pi)*(0,0, Integral -a and a of (a/((a^2+(y')^2)^3/2)dy')

I think all 4 sides can be summed to make it 4 times that. I don't really have any idea what I'm doing though so if someone could explain it would be appreciated.

Yes, that's exactly how you calculate the field at the center. Why do you suspect it isn't correct?
 
No reason, just never been directly taught how to do an integral of this form, this just seemed the logical thing to do. Frustrating as this was an exam question last week and I didn't bother to try it as assumed I wouldn't be able to :(
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top