As yet I got no reply to my posting #111, I went on reading and think I found some explanations which are nicely in line with the current discussion.
Specifically I read
@article{wightman1995superselection,
title={{Superselection rules; old and new}},
author={Wightman, AS},
journal={Il Nuovo Cimento B (1971-1996)},
volume={110},
number={5},
pages={751--769},
issn={0369-3554},
year={1995},
publisher={Springer}
}
and
@article{strocchi1974proof,
title={{Proof of the charge superselection rule in local relativistic quantum field theory}},
author={Strocchi, F. and Wightman, A.S.},
journal={Journal of Mathematical Physics},
volume={15},
pages={2198},
year={1974}
}
The first article by Wightman is an easy read also for the non-specialist in field theory (like me) while the second one is highly technical.
The basic argument ( as far as I understood it) is that a global gauge symmetry leads to the existence of a conserved charge. If the gauge symmetry is furthermore local, this does not lead to any new conserved quantity but the charge current vector can be written as j^\mu=\partial_\nu F^{\mu \nu} (forgive me potential sign errors) which encompasses Gauss law for the charge density.
Now as we already discussed Gauss law allows to express the charge inside a volume to be expressed in terms of the electric field on the boundary. But the electric field on the boundary will commute with all operators localized inside the region. Hence the charge commutes with all local operators which and is thus a classical quantity. That is precisely the statement of supersymmetry. In formulas:
\int dV [\rho(x), A]=\int dV [\text{div} E(x), A]=\int dS\cdot [E, A]=0
where A is any (quasi-) local operator.
Now this argument is not precise as Gauss law does not hold as an operator equation. Hence in the second article Strocchi and Wightman use the Gupta Bleuler formalism.
The argument still assumes that the total charge can be represented as a unitary operator. This statement breaks down if the symmetry is broken.
After Goldstones theorem there was a lot of discussion how it can be avoided leading eventually to the Higgs mechanism. As far as I understand, the condition for Higgs mechanism to apply coincide with the presence of a superselection rule in the unbroken case.