Electron in a parallel plate capacitor

AI Thread Summary
To determine the acceleration of an electron in a parallel plate capacitor, one must apply kinematic equations for both the x and y directions. Newton's Second Law is crucial for relating acceleration to net force, which in this case is the electric force acting on the electron. The electric force can be expressed in terms of the charge of the electron and the electric field strength. Understanding how these equations interconnect is essential for solving the problem. Clarifying the relationship between acceleration, force, and electric field will lead to a complete understanding of the electron's motion.
Physics news on Phys.org
anyone? thanks.
 
I believe the posters in the previous thread hinted at the strategy quite nicely, but I suppose I'll detail it a bit more. First note the equations for kinematics. Let's define the vertical direction as our y-direction, and the horizontal direction as our x-direction. What is happening to the electron in the x-direction in terms of force (and subsequently accelertion)? Consider the same for the y-direction. You should be able to use these kinematic equations to find the acceleration of the electron. Then consider Newton's Second Law, and how the acceleration fits into this equation. This will allow you to find the net force, which is an electric force (hint hint). How can you write down the electric force in terms of the charge of the particle and the electric field?
 
Last edited:
hotcommodity said:
I believe the posters in the previous thread hinted at the strategy quite nicely, but I suppose I'll detail it a bit more. First note the equations for kinematics. Let's define the vertical direction as our y-direction, and the horizontal direction as our x-direction. What is happening to the electron in the x-direction in terms of force (and subsequently accelertion)? Consider the same for the y-direction. You should be able to use these kinematic equations to find the acceleration of the electron. Then consider Newton's Second Law, and how the acceleration fits into this equation. This will allow you to find the net force, which is an electric force (hint hint). How can you write down the electric force in terms of the charge of the particle and the electric field?

I have the acceleration, but nothing else makes sense after that. Care to explain?
 
selter01 said:
I have the acceleration, but nothing else makes sense after that. Care to explain?

Oh wow, this is quite an old thread. I guess the problem was to find the magnitude of the electric field. If you already have the acceleration of the electron, you're all set. What's the equation for Newton's Second Law? What's the equation for electric force? How do these equations relate to one another in this particular problem?
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top