Electron positron pair density in charge renormalization

boger
Messages
2
Reaction score
0
I am trying to find out the density of electron positron pairs around a bare electron charge. In most texts, I saw that the treatment relates to the observed charge vs. the bare charge.
I wanted to know if there is a formula that describes the density of electron positron pairs that surround the electron or an estimate on the number of pairs that exist around it.
 
Physics news on Phys.org
The standard reference for vacuum polarization is Uehling's paper in Physical Review: Phys. Rev. 48, 55–63 (1935)
Polarization Effects in the Positron Theory
Abstract
Some of the consequences of the positron theory for the special case of impressed electrostatic fields are investigated. By imposing a restriction only on the maximum value of the field intensity, which must always be assumed much smaller than a certain critical value, but with no restrictions on the variation of this intensity, a formula for the charge induced by a charge distribution is obtained. The existence of an induced charge corresponds to a polarization of the vacuum, and as a consequence, to deviations from Coulomb's law for the mutual potential energy of point charges. Consequences of these deviations which are investigated are the departures from the Coulombian scattering law for heavy particles and the displacement in the energy levels for atomic electrons moving in the field of the nucleus.
 
Uehling paper on vacuum polarization refers to the change in the observed charge and the columb potential.
I am looking for a formula of the total amount of virtual pairs that surround a charge and not just their net effect. Anyone has an idea where to find such description?
 
This is a FAMQ (Frequently-Asked Meaningless Question). Modification of the Coulomb field due to vacuum polarization results from a quantum superposition of any number of particle pairs.
 
Thread 'Why is there such a difference between the total cross-section data? (simulation vs. experiment)'
Well, I'm simulating a neutron-proton scattering phase shift. The equation that I solve numerically is the Phase function method and is $$ \frac{d}{dr}[\delta_{i+1}] = \frac{2\mu}{\hbar^2}\frac{V(r)}{k^2}\sin(kr + \delta_i)$$ ##\delta_i## is the phase shift for triplet and singlet state, ##\mu## is the reduced mass for neutron-proton, ##k=\sqrt{2\mu E_{cm}/\hbar^2}## is the wave number and ##V(r)## is the potential of interaction like Yukawa, Wood-Saxon, Square well potential, etc. I first...
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top