Electronic partition function for molecule with degeneracies

wiveykid
Messages
3
Reaction score
0

Homework Statement


A atom had a threefold degenerate ground level, a non degenerate electronically excited level at 3500 cm^-1(setting the energy orgin as the ground electronic state energy of the atom ) and a threefold degenerate level at 4700 cm^-1 . Calculate the electronic partition function of this atom at 2000K


Homework Equations



qel= sumnation{i=0inf}[gel*exp[-(Ei-Ei-1)/(kbT)]]

The Attempt at a Solution



I see three levels in the problem
I believe, given the problem statement, that g0=3, g1=1 @3500cm-1, g2=3@4700cm-1

I came up with the equation
qel= 3+ 1*exp[-(E1-E0)/(kbT)] + 3*exp[-(E2-E1)/(kbT)]

T= 2000K, kb= Boltzmann constant ~1.38e-23

I am having trouble finding the energy values for each excited state. I am not sure if E=hv applies to this problem.

Also I am not too confident in the equation I found.

If anyone understands degeneracy, electronic partition functions or excited electronic stateI would greatly appreciate any help
 
Physics news on Phys.org
I would assume that you just use
E = h f
= h c / lambda
= hbar c k
, no? (I'm assuming that the inverse lengths that the problem specifies are wavenumbers of photons that would be emitted from the corresponding energy differences.)
 
yes I guess I can just multiply those numbers by c to get the excited state energies. Doing this it seems that all the exponentials go to zero because kbT is so small and c is so large. I guess the electronic partition function ends up being equal to 3
 
wiveykid said:
yes I guess I can just multiply those numbers by c to get the excited state energies. Doing this it seems that all the exponentials go to zero because kbT is so small and c is so large. I guess the electronic partition function ends up being equal to 3
There is more to the calculation than just kBT and c. Try calculating the value of \frac{\Delta E}{k_B T} for the two excited states.

wiveykid said:
I came up with the equation
qel= 3+ 1*exp[-(E1-E0)/(kbT)] + 3*exp[-(E2-E1)/(kbT)]
That's pretty much correct, except that it is E2-E0 in the final term.

I am having trouble finding the energy values for each excited state. I am not sure if E=hv applies to this problem.
Yes, it does.
 
Last edited:
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top