Electrostatic potential energy for concentric spheres

AI Thread Summary
The discussion centers on calculating the total energy stored in the electric field between two concentric metal spheres, with the inner sphere charged positively and the outer sphere negatively. Participants agree that treating the spheres as parallel flat slabs simplifies the problem, akin to a capacitor, since the electric field inside the inner sphere is zero. The electric field between the spheres is considered constant, allowing for the use of standard capacitor formulas to find the energy stored. The potential difference can be calculated by integrating the electric field over the separation distance of 0.5 cm, although some suggest that direct application of energy formulas may suffice. This approach effectively demonstrates the relationship between spherical and flat capacitor configurations in electrostatics.
wombat7373
Messages
11
Reaction score
0
Two concentric metal spheres have radii r_1 = 10 cm and r_2 = 10.5 cm. The inner sphere has a charge of Q = 5 nC spread uniformly on its surface, and the outer sphere has charge -Q on its surface. (a) calculate the total energy stored in the electric field inside the spheres Hint: You can treat the spheres essentially as parallel flat slabs separated by 0.5 cm why?



\phi = 4\pi kQ
U=qV/2




First of all, I don't know why treating the spheres as slabs will help, but since that's the hint, I'm looking for a way to do it. I can show with Gauss' Law that teh electric field inside the inner sphere is 0, so that kind of makes them like slabs. Is that enough justification and why?
 
Last edited:
Physics news on Phys.org
HINT: Think capacitors. How do you find the energy stored in a capacitor?

Two charged slabs separated by some distance d, is essentially a capacitor.
This is why treating the spheres as flat surfaces will help. The curvature will not really affect the situation, it is essentially a capacitor, whether spherical or flat.
 
G01 said:
HINT: Think capacitors. How do you find the energy stored in a capacitor?

Two charged slabs separated by some distance d, is essentially a capacitor.
This is why treating the spheres as flat surfaces will help. The curvature will not really affect the situation, it is essentially a capacitor, whether spherical or flat.

I suppose I'll buy it just because the electric field ends up being constant like with two plates. So to find the energy I just do U=(1/2)QV. I suppose I could calculate the potential difference by integrating the electric field over that 0.5 cm distance. Would that be the way to do it?
 
I think its safe to assume that the field is constant within the capacitor. You shouldn't have to integrate, unless you want the practice of course:smile:

I would go about this using the formula for energy stored in an electric field, which is:

U = 1/2 C V^2
 
Last edited:
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top