danago
Gold Member
- 1,118
- 4
Given the following displacement vector (and thus, also, acceleration vector):
<br /> \begin{array}{l}<br /> \overrightarrow r (t) = \left( {\begin{array}{*{20}c}<br /> {1 + 3\cos (\frac{{\pi t}}{2})} \\<br /> {2 + 4\sin (\frac{{\pi t}}{2})} \\<br /> \end{array}} \right) \\ <br /> \overrightarrow a (t) = \left( {\begin{array}{*{20}c}<br /> {\frac{{ - 3\pi ^2 }}{4}\cos (\frac{{\pi t}}{2})} \\<br /> { - \pi ^2 \sin (\frac{{\pi t}}{2})} \\<br /> \end{array}} \right) \\ <br /> \end{array}<br />
I need to show that the body is undergoing eliptical motion. This is how i proceeded:
<br /> \begin{array}{l}<br /> \overrightarrow r (t) = \left( {\begin{array}{*{20}c}<br /> {1 + 3\cos (\frac{{\pi t}}{2})} \\<br /> {2 + 4\sin (\frac{{\pi t}}{2})} \\<br /> \end{array}} \right) = \left( {\begin{array}{*{20}c}<br /> {3\cos (\frac{{\pi t}}{2})} \\<br /> {4\sin (\frac{{\pi t}}{2})} \\<br /> \end{array}} \right) + \left( {\begin{array}{*{20}c}<br /> 1 \\<br /> 2 \\<br /> \end{array}} \right) \\ <br /> \therefore\left( {\begin{array}{*{20}c}<br /> {3\cos (\frac{{\pi t}}{2})} \\<br /> {4\sin (\frac{{\pi t}}{2})} \\<br /> \end{array}} \right) = \overrightarrow r (t) - \left( {\begin{array}{*{20}c}<br /> 1 \\<br /> 2 \\<br /> \end{array}} \right) \\ <br /> \\ <br /> \overrightarrow a (t) = \left( {\begin{array}{*{20}c}<br /> {\frac{{ - 3\pi ^2 }}{4}\cos (\frac{{\pi t}}{2})} \\<br /> { - \pi ^2 \sin (\frac{{\pi t}}{2})} \\<br /> \end{array}} \right) = \frac{{ - \pi ^2 }}{4}\left( {\begin{array}{*{20}c}<br /> {3\cos (\frac{{\pi t}}{2})} \\<br /> {4\sin (\frac{{\pi t}}{2})} \\<br /> \end{array}} \right) = \frac{{ - \pi ^2 }}{4}\left[ {\overrightarrow r (t) - \left( {\begin{array}{*{20}c}<br /> 1 \\<br /> 2 \\<br /> \end{array}} \right)} \right] \\ <br /> \end{array}<br />
Is that how i should do it? By showing that the acceleration is proportional to the displacement vector?
Thanks in advance,
Dan.
<br /> \begin{array}{l}<br /> \overrightarrow r (t) = \left( {\begin{array}{*{20}c}<br /> {1 + 3\cos (\frac{{\pi t}}{2})} \\<br /> {2 + 4\sin (\frac{{\pi t}}{2})} \\<br /> \end{array}} \right) \\ <br /> \overrightarrow a (t) = \left( {\begin{array}{*{20}c}<br /> {\frac{{ - 3\pi ^2 }}{4}\cos (\frac{{\pi t}}{2})} \\<br /> { - \pi ^2 \sin (\frac{{\pi t}}{2})} \\<br /> \end{array}} \right) \\ <br /> \end{array}<br />
I need to show that the body is undergoing eliptical motion. This is how i proceeded:
<br /> \begin{array}{l}<br /> \overrightarrow r (t) = \left( {\begin{array}{*{20}c}<br /> {1 + 3\cos (\frac{{\pi t}}{2})} \\<br /> {2 + 4\sin (\frac{{\pi t}}{2})} \\<br /> \end{array}} \right) = \left( {\begin{array}{*{20}c}<br /> {3\cos (\frac{{\pi t}}{2})} \\<br /> {4\sin (\frac{{\pi t}}{2})} \\<br /> \end{array}} \right) + \left( {\begin{array}{*{20}c}<br /> 1 \\<br /> 2 \\<br /> \end{array}} \right) \\ <br /> \therefore\left( {\begin{array}{*{20}c}<br /> {3\cos (\frac{{\pi t}}{2})} \\<br /> {4\sin (\frac{{\pi t}}{2})} \\<br /> \end{array}} \right) = \overrightarrow r (t) - \left( {\begin{array}{*{20}c}<br /> 1 \\<br /> 2 \\<br /> \end{array}} \right) \\ <br /> \\ <br /> \overrightarrow a (t) = \left( {\begin{array}{*{20}c}<br /> {\frac{{ - 3\pi ^2 }}{4}\cos (\frac{{\pi t}}{2})} \\<br /> { - \pi ^2 \sin (\frac{{\pi t}}{2})} \\<br /> \end{array}} \right) = \frac{{ - \pi ^2 }}{4}\left( {\begin{array}{*{20}c}<br /> {3\cos (\frac{{\pi t}}{2})} \\<br /> {4\sin (\frac{{\pi t}}{2})} \\<br /> \end{array}} \right) = \frac{{ - \pi ^2 }}{4}\left[ {\overrightarrow r (t) - \left( {\begin{array}{*{20}c}<br /> 1 \\<br /> 2 \\<br /> \end{array}} \right)} \right] \\ <br /> \end{array}<br />
Is that how i should do it? By showing that the acceleration is proportional to the displacement vector?
Thanks in advance,
Dan.