Energy-momentum tensor for a scalar field (sign problem)

knobelc
Messages
14
Reaction score
0
Hi

I have a small subtle problem with the sign of the energy-momentum tensor for a scalar field as derived by varying the metric (s.b.). I would appreciate very much if somebody could help me on my specific issue. Let me describe the problem in more detail:

I conform to the sign convention g_{\mu \nu} = (+,-,-,-). The Lagranagian for a real scalar field is

\mathcal{L} = \frac{1}{2} \dot{\Phi}^2- (\nabla \Phi)^2 - V(\Phi ) = \frac{1}{2} g^{\mu \nu} \partial_\mu\Phi \;\partial_\nu\Phi- V(\Phi ).

From Noether Theorem we find the energy-momentum tensor


T^{\mu \nu} = \frac{\partial \mathcal{L}}{\partial (\partial_\mu \Phi)} \: \partial^\nu \Phi - \mathcal{L} g^{\mu \nu} = \partial^\mu \Phi \partial^\nu \Phi - \mathcal{L} g^{\mu \nu}.

Now I want to derive this via varying the action

S = \int \mathcal{L} \sqrt{-g}\; dx^4

in respect to g_{\mu \nu}. In particular it holds

\delta S = \delta\int \mathcal{L} \sqrt{-g}\; dx^4 = -\frac{1}{2}\int T_{\mu \nu} \delta g^{\mu\nu} \sqrt{-g}\; dx^4.

T_{\mu \nu} is defined so that varying the action derived from the total Lagrangian

\mathcal{L_{\rm tot}} = \frac{1}{16\pi G} R + \mathcal{L}

yields the Einstein field equations

G_{\mu \nu} = 8\pi G T_{\mu \nu}.

(Note that

\delta\int\frac{1}{16\pi G} R \sqrt{-g}\; dx^4 = \int G_{\mu \nu} \delta g^{\mu \nu}\sqrt{-g}\; dx^4,

therefore the - sign in the definition of T_{\mu \nu}.)

Now let's vary the lagrangian of the scalar field:

\delta \int \mathcal{L} \sqrt{-g}\; dx^4
= \int \delta(\mathcal{L}) \sqrt{-g} + \mathcal{L} \delta(\sqrt{-g})\; dx^4
= \int \delta \left( \frac{1}{2} g^{\mu \nu} \partial_\mu\Phi \;\partial_\nu\Phi- V(\Phi ) \right) \sqrt{-g} + \mathcal{L} \left(-\frac{1}{2} g_{\mu \nu} \delta g^{\mu \nu}\right) \sqrt{-g}\; dx^4
= \frac{1}{2}\int \left( \delta g^{\mu \nu} \partial_\mu\Phi \;\partial_\nu\Phi - \mathcal{L} g_{\mu \nu} \delta g^{\mu \nu} \right) \sqrt{-g}\; dx^4
= \frac{1}{2}\int \left(\partial_\mu\Phi \;\partial_\nu\Phi - \mathcal{L} g_{\mu \nu} \right) \delta g^{\mu \nu} \sqrt{-g}\; dx^4.

Comparing this with the definition of the T_{\mu \nu} yields

T_{\mu \nu} = -\partial_\mu \Phi \partial_\nu \Phi + \mathcal{L} g_{\mu \nu}

leading to the opposite sign as derived by the Noether Theorem.

I would appreciate very much if somebody could explain why I get the sign wrong. I know this is a subtle (and possibly unimportant) issue but getting the wrong sign without understanding why gives a bad feeling. Thank you for any help!
 
Physics news on Phys.org
According to Wald the Klein-Gordon energy-momentum tensor from Noether's theorem agrees with the Klein-Gordon energy-momentum tensor from varying the metric "up to a numerical factor." I do not know if the numerical factor is -1.

Wald says that in others cases, there is less agreement, and it is the energy-momentum arrived at by varying g that appears on the right of Einstein's equation.

If you have Wald, look near the bottom of page 457.

I first ran into differences between the canonical and symmetric energy-momentum tensors in section 12.10 of Jackson.
 
Last edited:
I think, I got the reason for the wrong sign. Since I used the signature g_{\mu \nu} = (+,-,-,-) my definitions of T^{\mu \nu} and \mathcal{L_{\rm tot}} are not correct. With my signature the correct expressions read as

\delta S = \delta\int \mathcal{L} \sqrt{-g}\; dx^4 = +\frac{1}{2}\int T_{\mu \nu} \delta g^{\mu\nu} \sqrt{-g}\; dx^4.

and

\mathcal{L_{\rm tot}} = -\frac{1}{16\pi G} R + \mathcal{L}.

With this I get everything right. :-)
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top