Energy spectrum from dispersion relation E(k)

sherumann
Messages
2
Reaction score
0
Hi. What I'm trying to do is to obtain the energy spectrum from the following dispersion relation:

E^4-A·E^3+B·E^2-C·E+D-F·E^2·cos(k·a_0)^2+G·E·cos(k·a_0)^2-H·cos(k·a_0)^2 = 0

where E is the energy, k is the wave vector and a0 the distance between adjacent neighbors in a 1-Dimensional lattice with a two-atom basis, with some weird on-site energies.

Given the following model parameters:

A = -48.37528081
B = +877.6426691
C = -7077.321036
D = +21403.79575
F = -0.00002232761528
G = +0.0005479196789
H = -0.003361487230

I keep getting imaginary energies! What I do is simply solve the equation for E given some values for k. Am I doing it wrong? Or the parameters must be wrong? Please help! :(
 
Physics news on Phys.org
Where does that equation come from? That doesn't have the usual form of a tight-binding equation.
 
kanato said:
Where does that equation come from? That doesn't have the usual form of a tight-binding equation.

It comes from the renormalization of a more complex structure in terms of some on-site energies. I yet don't understand very well were it comes from (I'm sure about the dispersion relation, though), all I want to know is if what I'm doing is right or not...
 
Well all you're doing is solving for E, right? It's an algebraic problem at this point, and the physics has been done. Since it's a 4th order polynomial, there are four solutions, which may be real or complex.

If everything is correct, and you are getting complex energies, then that would mean you have states with finite lifetimes. How are you solving for E? Many software packages can find roots of polynomials, have you checked with different ones?
 
If there is a renormalization process, then the energy could be complex
the imaginary of the energy represent the lifetime of that particular state.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top