Energy Uncertainty and expectation value of H

Pikas
Messages
6
Reaction score
1

Homework Statement


A particle at time zero has a wave function Psi(x,t=0) = A*[phi_1(x)-i*sin(x)], where phi_1 and phi_2 are orthonormal stationary states for a Schrodinger equation with some potential V(x) and energy eigenvalues E1, E2, respectively.
a) Compute the normalization constant A.
b) Work out Psi(x,t)
c) Compute <H> for Psi(x,t)
d) Compute delta_E, the energy uncertainty

Homework Equations



Delta_E = Sqrt(<E^2>-<E>^2)

The Attempt at a Solution


a) Set: 1 = <Psi(0)|Psi(0)> => A = 1/sqrt(2)
b) From previous: Psi(x,t=0) = 1/sqrt(2)*[phi_1 - i*phi_2]
Use the time evolution equation: Psi(x,t) = 1/sqrt(2)*[phi_1*e^(-i*E1*t/h-bar) - i*phi_2*e^(-i*E2*t/h-bar)]
c) Probability of measuring E1: P1 = |<phi_1|Psi(x,t)>|^2 = 1/2
Similarly, Probability of measuring E2: P2 = 1/2
Then <H> = P1*E1 + P2*E2 = (E1+E2)/2
d) For this one, I attempted to use the mentioned equation. However, I could not find <E^2>.
I thought it would be: (P1*E1)^2 + (P2*E2)^2, but this yields a negative values under the square root, which is not possible since the energy uncertainty is probability not imaginary.
Please help, thank you.
 
Physics news on Phys.org
Pikas said:
a) Set: 1 = <Psi(0)|Psi(0)> => A = 1/sqrt(2)
b) From previous: Psi(x,t=0) = 1/sqrt(2)*[phi_1 - i*phi_2]
Use the time evolution equation: Psi(x,t) = 1/sqrt(2)*[phi_1*e^(-i*E1*t/h-bar) - i*phi_2*e^(-i*E2*t/h-bar)]
c) Probability of measuring E1: P1 = |<phi_1|Psi(x,t)>|^2 = 1/2
Similarly, Probability of measuring E2: P2 = 1/2
Then <H> = P1*E1 + P2*E2 = (E1+E2)/2
That looks fine.

Pikas said:
d) For this one, I attempted to use the mentioned equation. However, I could not find <E^2>.
I thought it would be: (P1*E1)^2 + (P2*E2)^2, but this yields a negative values under the square root, which is not possible since the energy uncertainty is probability not imaginary.
Go back to the definition of ##\langle E^2 \rangle##, and see what you can get.
 
Thank you very much.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top