Equal and Opposite variable forces on a mass - does it accelerate?

AI Thread Summary
A mass attached to a spring on an air track experiences equal and opposite forces from both the hand pushing it and the spring's reaction. Despite these forces being equal and opposite, the mass accelerates because the hand applies an external force that exceeds the spring's force momentarily. This external force creates a net force on the mass, allowing it to move. The discussion emphasizes that while forces within a closed system may balance, external influences can cause acceleration. Understanding this distinction clarifies why the mass moves rather than maintaining a constant velocity.
Erica799
Messages
1
Reaction score
0
1. A mass is attached to a spring that is mounted on the end of an air track. The mass is pushed by your hand along the track, providing a force, F hand. The spring provides a force on the mass, F spring, equal to F hand but opposite in direction. Assume (frictionless?) air track is being used. The forces vary linearly (classic F vs x, work is area under the curve, net work equals zero on the spring/mass system.) How do I explain why the mass moves, if the forces on the mass are always equal and opposite? Is the mass accelerating, or moving at a constant velocity? I am confused!



Homework Equations

f(t) = m (dv/dt) ?



The Attempt at a Solution


 
Physics news on Phys.org
If there is a force, there is an acceleration. Think of F = ma

As for why it moves. You are correct, your hand pushing on the mass is the same force of the mass pushing back on your hand. However, this is looking at it as a closed system. More force is coming outside of your defined system that is 'biasing' the direction of the force (ie. from you).

I just realized that biasing is a really bad word to use in this context. More force is added from outside the system to overcome the force that is pushing back on your hand. The equal and opposite force for this force is also located outside the system.

Hope that makes sense.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top