Equation calculations about the coefficient of kinetic friction

Click For Summary

Homework Help Overview

The discussion revolves around the coefficient of kinetic friction, specifically the equation ##\mu_k = \frac{a}{g}## and its verification. Participants are exploring the context of this equation within a physics problem involving motion and acceleration.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants are attempting to verify the equation for the coefficient of kinetic friction and discussing its application in the context of a specific problem. Questions arise regarding the clarity of variables and the interpretation of graphs related to velocity and distance.

Discussion Status

Some participants have provided guidance on the equation and its context, while others have raised concerns about the clarity of certain variables and the assumptions made in the problem setup. There is an ongoing exploration of how to relate acceleration to the given variables.

Contextual Notes

There are mentions of potential ambiguities in the graph and the definitions of variables such as distance and velocity. Participants are encouraged to clarify these aspects before proceeding with their solutions.

Javad
Messages
35
Reaction score
2
Homework Statement
A block (unknown weight) is pushed to start moving at t1 and slides freely on the surface (without applying extra force) and stop at t10, how can determine the kinetic coefficient of friction µk5 between times of t5 and t6 by using V5, V6 and X5? (The block and surface are the same material, glass; using lubricant does not matter)
Relevant Equations
µk=𝑎/g
I need an expert to verify equations about the coefficient of kinetic friction.

the kinetic coefficient of friction µk5.jpg
 
Physics news on Phys.org
Certainly ##\mu_k = \frac a g## is correct in this context.
 
  • Haha
Likes   Reactions: Steve4Physics
Javad said:
I need an expert to verify equations about the coefficient of kinetic friction.
Hi @Javad. Welcome to PF.

In case you didn’t realize, I will note that @PeroK (who answered you in Post #2):
a) is an expert
b) has verified your equation about the coefficient of kinetic friction
- fulfilling your request!

In addition, please note;

1. The graph (showing v4, v5, v6, v7 and v8 on a horizontal line corresponding to v = 5) would mean the velocity is constant - which is not correct.

2. The meaning of the x-values is unclear. ambiguous as they woulld usually refer to thrFor example, is x5 the total distance traveled between times t1 and t5? Or between t4 and t5? Or between t5 and t6? Or something else?
EDIT. As noted by @jack action in Post #4, x5 is the distance covered between times t5 and t6. (Though a better symbol than 'x' might have been 'Δx'.)

3. Your equation ##v= \frac x t## is not the instantaneous velocity. The equation is generally only used to find velocity when acceleration is zero or to find average velocity.

If you can sort out the above problems, you can post your attempt at a solution and we can try to help you.
 
Last edited:
  • Like
Likes   Reactions: PeroK
Actually, everything you've done so far is good and you are on the right path. (##\mu_k = \frac{a}{g}##)

But the problem asks to find in terms of ##v_5##, ##v_6## and ##x_5##. How can you define ##a## - between ##t_5## and ##t_6## - in those terms?

P.S.: The distance ##x_5## is clearly the traveled distance between ##t_5## and ##t_6##.
 
Thank you, my background is on biology, so I am sorry for poor knowledge on physics. I made the question correct, it is a simplified question from the main question.
##\mu_k = \frac{a}{g}## is the equation that can work for the main question, for verification of ##\mu_k = \frac{a}{g}## could you introduce a textbook or a paper? I need a reference for the equation that I used.
the kinetic coefficient of friction.jpg

Equations on the below show Fnet, Fa and Ff
I am not sure if there is missing equations that I explained above.
kinetic coefficient of friction Fnet.png
 
  • Like
Likes   Reactions: PeroK
Javad said:
Thank you, my background is on biology, so I am sorry for poor knowledge on physics. I made the question correct, it is a simplified question from the main question.
##\mu_k = \frac{a}{g}## is the equation that can work for the main question, for verification of ##\mu_k = \frac{a}{g}## could you introduce a textbook or a paper? I need a reference for the equation that I used.
View attachment 293720
Equations on the below show Fnet, Fa and Ff
I am not sure if there is missing equations that I explained above.
You know ##g## and you want to find ##\mu_k##, so you need first to calculate the acceleration ##a##. I imagine you are supposed to calculate that from the graph. You can find acceleration using either speed and position or speed and time - using the SUVAT formulas and assuming approximately constant acceleration.

Note that in this case we are talking about deceleration, so technically ##a## is the magnitude of the deceleration.
 
  • Like
Likes   Reactions: Javad

Similar threads

Replies
18
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
13
Views
3K
  • · Replies 16 ·
Replies
16
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
12K
  • · Replies 33 ·
2
Replies
33
Views
3K
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K