Equation general of conic in polar coordinates

Jhenrique
Messages
676
Reaction score
4
The conic equation has 2 versions in cartesian coordinates:

The general: ##Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0##
And the parametric: ##y^2 = 2px + (e^2-1)x^2##

In polar coordinates, I known just the parametric: ##r = \frac{p}{1+e\cos(\theta)}##
But exist a general form too?
 
Mathematics news on Phys.org
You can express x and y in your general equation in terms of r and θ to get the general form. I think it will look quite messy. The parametric uses the "right" coordinate system, where the equation has a nice form. Usually there is no point in polar coordinates if the center does not have a special meaning.
 
mfb said:
You can express x and y in your general equation in terms of r and θ to get the general form. I think it will look quite messy. The parametric uses the "right" coordinate system, where the equation has a nice form. Usually there is no point in polar coordinates if the center does not have a special meaning.

But what you are suggesting is a transformation... I'm not looking for this, but yes by a general expression/format that is a conic but is independent of the cartesian format...
 
Well, you look for the result of a transformation. Isn't it natural to just do this transformation then?
 
Ahhh, does not matter... thanks of anyway
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top