Equation of motion coursework

1. The problem statement, all variables and given/known data

I have coursework on rhe convolution integral, however i am struggling to find the equation of motion to start the whole thing off with.

I will attach a picture of the problem, is is simply a cantilevered bar with a concentrated mass on the end and a damper.

2. Relevant equations

I am assuming you find the deflection at the end of the beam as a result of the force P(t), which i think is
P(t)L^3/3EI

However i am not sure where to go from here


3. The attempt at a solution

Thinking it may possibly be
m[tex]\ddot{x}[/tex]+c[tex]\dot{x}[/tex]=P(t)L^3/3EI
however i think i may need to add in stiffness somewhere else..
 

Attachments

1,962
411
Your simple model for the cantilever, looks OK, and it gives you the stiffness if you look at it properly. You have a deflection relation that is usually written as
defl = P*L^3/(3*E*I)
Now re-arrange that to read
P = (3*E*I)/(L^3) * defl
and from there you can see that the stiffness of this system is
K = 3EI/L^3
Now back to your equation of motion, which will look like
m*xddot + c*xdot + K*x = F(t)
where F(t) is whatever applied forcing function acts on the mass.

See if that will get you going!
 

The Physics Forums Way

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top