Equation of the Osculating circle

  • Thread starter Thread starter chillpenguin
  • Start date Start date
  • Tags Tags
    Circle
chillpenguin
Messages
13
Reaction score
0

Homework Statement


The ellipse has equations x = 2cos(t) and y = 3sin(t) where 0 <= t <= 2*pi
The problem asked me to calculate the curvature at points (2,0) and (0,3). I did that, but now the problem asks what the equation of the osculating circle is at each of those points. I know the radius of curvature of each of those points since I already calculated the curvature. But I'm not sure how to figure out where the center of the osculating circle needs to be.


Homework Equations


I used this equation for calculating curvature of a parametric curve: http://math.info/image/58/curvature_parametric.gif


The Attempt at a Solution

 
Physics news on Phys.org
chillpenguin said:

Homework Statement


The ellipse has equations x = 2cos(t) and y = 3sin(t) where 0 <= t <= 2*pi
The problem asked me to calculate the curvature at points (2,0) and (0,3). I did that, but now the problem asks what the equation of the osculating circle is at each of those points. I know the radius of curvature of each of those points since I already calculated the curvature. But I'm not sure how to figure out where the center of the osculating circle needs to be.


Homework Equations


I used this equation for calculating curvature of a parametric curve: http://math.info/image/58/curvature_parametric.gif


The Attempt at a Solution


You know the radius of the osculating circle is equal to the radius of curvature. To find the center of the osculating circle, move from the curve a distance equal the radius along the direction of the principle normal (the direction of the normal component of acceleration).
 
Thank you for your response. Before you replied I thought of something. Tell me if it's a valid argument. Since the graph of this parametric is symmetrical, and both my points are on either the y or x axis, wouldn't the center of the osculating circle be on the x or y axis? So I could just subtract the radius from 2 for the first one and 3 for the second one. Is that valid? For example: the point (2,0) had a radius of curvature of 27/6. I could subtract that from 2 and get -5/2. So the center would be -5/2. Is that correct?
 
chillpenguin said:
Thank you for your response. Before you replied I thought of something. Tell me if it's a valid argument. Since the graph of this parametric is symmetrical, and both my points are on either the y or x axis, wouldn't the center of the osculating circle be on the x or y axis? So I could just subtract the radius from 2 for the first one and 3 for the second one. Is that valid? For example: the point (2,0) had a radius of curvature of 27/6. I could subtract that from 2 and get -5/2. So the center would be -5/2. Is that correct?

That looks correct. Luckily, you have points where the direction of the normal is easy.
 
I hope my instructor doesn't dock me points for taking a shortcut haha
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top