I Equations of motion from Born-Infeld Lagrangian

OhNoYaDidn't
Messages
25
Reaction score
0
We can write the Born-Infeld Lagrangian as:

L_{BI}=1 - \sqrt{ 1+\frac{1}{2}F_{\mu\nu }F^{\mu\nu}-\frac{1}{16}\left(F_{\mu\nu}\widetilde{F}^{\mu\nu} \right)^{2}}

with G^{\mu\nu}=\frac{\partial L}{\partial F_{\mu\nu}} how can we show that in empty space the equations of motion take the form \partial_{\mu}G^{\mu\nu}=0
We should start with an Euler-Lagrange equation, but how can i write it for this Lagrangian?
 
Physics news on Phys.org
The EL equation for this case is
$$\partial_{\nu}\frac{\partial L}{\partial A_{\mu,\nu}}=0$$
where ##A_{\mu,\nu}=\partial_{\nu}A_{\mu}##. Using ##F_{\mu\nu}=A_{\nu,\mu}-A_{\mu,\nu}##, the rest should be straightforward. See also Jackson to see how covariant Maxwell equations are derived for ordinary ##F_{\mu\nu}F^{\mu\nu}## action. For other details about Born Infeld see Zwiebach - A First Course in String Theory.
 
Last edited:
  • Like
Likes vahdaneh and OhNoYaDidn't
Thank you, Demystifier.
I have never seen F_{\mu\nu} written like that, but using that:
F_{\mu\nu}F^{\mu\nu}=(A_{\nu\mu}-A_{\mu\nu})(A^{\nu\mu}-A^{\mu\nu})=A_{\nu\mu}A^{\nu\mu}-A_{\nu\mu}A^{\mu\nu}-A_{\mu\nu}A^{\nu\mu}+A_{\mu\nu}A^{\mu\nu}
(F_{\mu\nu}\widetilde{F}^{\mu\nu})^{2}=((A_{\nu\mu}-A_{\mu\nu})\widetilde{F}^{\mu\nu})^{2}

\frac{\partial L}{\partial A_{\mu\nu}} = \frac{-\frac{1}{4}({-A^{\nu\mu}+A^{\mu\nu}})+\frac{1}{16}A_{\mu\nu}F_{\mu\nu}(\widetilde{F}^{\mu\nu})^{2}}{\sqrt{ 1+\frac{1}{2}F_{\mu\nu }F^{\mu\nu}-\frac{1}{16}\left(F_{\mu\nu}\widetilde{F}^{\mu\nu} \right)^{2}}}
What do i do with the \partial_{\nu} now?
 
OhNoYaDidn't said:
I have never seen F_{\mu\nu} written like that
Than you should first learn ordinary electrodynamics. See the Jackson's textbook.
 
OhNoYaDidn't said:
using that

You left out the commas. Look closely at what Demystifier posted; there are commas, so it's ##F_{\mu \nu} = A_{\nu , \mu} - A_{\mu , \nu}##. The commas are partial derivatives, so what he wrote is the same as ##F_{\mu \nu} = \partial_\mu A_\nu - \partial_\nu A_\mu##.

As Demystifier said, you need a good background in ordinary electrodynamics for the topic under discussion.
 
  • Like
Likes OhNoYaDidn't
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Back
Top