altanonat
- 2
- 0
Hello all,
I am currently studying dynamics of a wheel-axle set for my research. My problem is I could not find the same equation for the rate of the change of the momentum in the book, book is a little bit old and I could not find any errata about the book or any other references that explains the derivation of equations. Thank you in advance for your help.
I am trying to obtain the general wheel axle set equations of motion given in the 5th chapter of the book (all the equations and figures are taken from this book):
http://books.google.cz/books?id=TVenrrNeB4kC&printsec=frontcover&hl=tr&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
I am giving the axes systems in the book used:
https://imagizer.imageshack.us/v2/965x464q90/661/dLDE2P.png
The first axes is used as fixed inertial reference frame. The second one is an intermediate frame rotated through an angle \psi about the z axis of the third axes system (which is attached to the mass center of wheelset) Transformation equations between coordinate axes given in the book:
for small \psi and \phi
<br /> \begin{Bmatrix}<br /> i^{'}\\j^{'} \\ k^{'} <br /> \end{Bmatrix}=\begin{bmatrix}<br /> 1 &\psi &0 \\ <br /> -\psi &1 &0 \\ <br /> 0 &-phi & 1<br /> \end{bmatrix}\begin{Bmatrix}<br /> i^{'''}\\j^{'''} \\ k^{'''} <br /> \end{Bmatrix}<br />
https://imagizer.imageshack.us/v2/773x270q90/661/B4L8It.png
The angular velocity \mathbf{\omega} of the axle wheelset is given by:
The angular velocity \mathbf{\omega} expressed in body coordinate axis is given by:
where \omega_{x}=\dot{\phi }, \omega_{y}=\left ( \Omega +\dot{\beta }+\dot{\psi }sin\phi \right ), \omega_{z}=\dot{\psi }cos\phi and the angular momentum of the wheel axle set in the body coordinate system
please note that because of symmetry(principal mass moments) I_{wx}=I_{wz}.
Angular velocity of coordinate axes
ω_axis×H=(ψ ̇sinφI_wx ψ ̇cosφi^'-ψ ̇cosφI_wy (Ω+β ̇+ψ ̇sinφ) i^' )+(φ ̇I_wy (Ω+β ̇+ψ ̇sinφ) k^'-ψ ̇sinφI_wx φ ̇k^' )
The rate of change of momentum is given as
This point is where I can not get the same equation in the book for rate of change of momentum. The rate of change of momentum given in fixed intertial frame is:
Probably I am missing a simple point but I could not find what it is.
I am currently studying dynamics of a wheel-axle set for my research. My problem is I could not find the same equation for the rate of the change of the momentum in the book, book is a little bit old and I could not find any errata about the book or any other references that explains the derivation of equations. Thank you in advance for your help.
I am trying to obtain the general wheel axle set equations of motion given in the 5th chapter of the book (all the equations and figures are taken from this book):
http://books.google.cz/books?id=TVenrrNeB4kC&printsec=frontcover&hl=tr&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
I am giving the axes systems in the book used:
https://imagizer.imageshack.us/v2/965x464q90/661/dLDE2P.png
The first axes is used as fixed inertial reference frame. The second one is an intermediate frame rotated through an angle \psi about the z axis of the third axes system (which is attached to the mass center of wheelset) Transformation equations between coordinate axes given in the book:
<br />
\begin{Bmatrix}<br />
i^{'}\\j^{'} \\ k^{'} <br />
\end{Bmatrix}=\begin{bmatrix}<br />
1 &0 &0 \\ <br />
0 &cos\phi &sin\phi \\ <br />
0 &-sin\phi & cos\phi<br />
\end{bmatrix}\begin{Bmatrix}<br />
i^{''}\\j^{''} \\ k^{''} <br />
\end{Bmatrix}<br />
<br /> \begin{Bmatrix}<br /> i^{''}\\j^{''} \\ k^{''} <br /> \end{Bmatrix}=\begin{bmatrix}<br /> cos\psi &sin\psi &0 \\ <br /> -sin\psi &cos\psi &0 \\ <br /> 0 &0 & 1<br /> \end{bmatrix}\begin{Bmatrix}<br /> i^{'''}\\j^{'''} \\ k^{'''} <br /> \end{Bmatrix}<br />
<br /> \begin{Bmatrix}<br /> i^{'}\\j^{'} \\ k^{'} <br /> \end{Bmatrix}=\begin{bmatrix}<br /> cos\psi &sin\psi &0 \\ <br /> -cos\phi sin\psi &cos\phi cos\psi &0 \\ <br /> sin\phi sin\psi &-sin\phi cos\psi & 1<br /> \end{bmatrix}\begin{Bmatrix}<br /> i^{'''}\\j^{'''} \\ k^{'''} <br /> \end{Bmatrix}<br />
<br /> \begin{Bmatrix}<br /> i^{''}\\j^{''} \\ k^{''} <br /> \end{Bmatrix}=\begin{bmatrix}<br /> cos\psi &sin\psi &0 \\ <br /> -sin\psi &cos\psi &0 \\ <br /> 0 &0 & 1<br /> \end{bmatrix}\begin{Bmatrix}<br /> i^{'''}\\j^{'''} \\ k^{'''} <br /> \end{Bmatrix}<br />
<br /> \begin{Bmatrix}<br /> i^{'}\\j^{'} \\ k^{'} <br /> \end{Bmatrix}=\begin{bmatrix}<br /> cos\psi &sin\psi &0 \\ <br /> -cos\phi sin\psi &cos\phi cos\psi &0 \\ <br /> sin\phi sin\psi &-sin\phi cos\psi & 1<br /> \end{bmatrix}\begin{Bmatrix}<br /> i^{'''}\\j^{'''} \\ k^{'''} <br /> \end{Bmatrix}<br />
for small \psi and \phi
<br /> \begin{Bmatrix}<br /> i^{'}\\j^{'} \\ k^{'} <br /> \end{Bmatrix}=\begin{bmatrix}<br /> 1 &\psi &0 \\ <br /> -\psi &1 &0 \\ <br /> 0 &-phi & 1<br /> \end{bmatrix}\begin{Bmatrix}<br /> i^{'''}\\j^{'''} \\ k^{'''} <br /> \end{Bmatrix}<br />
https://imagizer.imageshack.us/v2/773x270q90/661/B4L8It.png
The angular velocity \mathbf{\omega} of the axle wheelset is given by:
\mathbf{\omega}=\dot{\phi }i^{''}+\left ( \Omega +\dot{\beta } \right )j^{'}+\dot{\psi }k^{''}
The angular velocity \mathbf{\omega} expressed in body coordinate axis is given by:
\mathbf{\omega}=\dot{\phi }i^{'}+\left ( \Omega +\dot{\beta }+\dot{\psi }sin\phi \right )j^{'}+\dot{\psi }cos\phi k^{'}
\mathbf{\omega}=\omega_{x}i^{'}+\omega_{y}j^{'}+\omega_{z}k^{'}
\mathbf{\omega}=\omega_{x}i^{'}+\omega_{y}j^{'}+\omega_{z}k^{'}
where \omega_{x}=\dot{\phi }, \omega_{y}=\left ( \Omega +\dot{\beta }+\dot{\psi }sin\phi \right ), \omega_{z}=\dot{\psi }cos\phi and the angular momentum of the wheel axle set in the body coordinate system
\mathbf{H}=I_{wx}\omega_{x}i^{'}+I_{wy}\omega_{y}j^{'}+I_{wz}\omega_{z}k^{'}
please note that because of symmetry(principal mass moments) I_{wx}=I_{wz}.
Angular velocity of coordinate axes
ω_axis×H=(ψ ̇sinφI_wx ψ ̇cosφi^'-ψ ̇cosφI_wy (Ω+β ̇+ψ ̇sinφ) i^' )+(φ ̇I_wy (Ω+β ̇+ψ ̇sinφ) k^'-ψ ̇sinφI_wx φ ̇k^' )
\mathbf{\omega_{axis}}=\dot{\phi }i^{'}+\dot{\psi }k^{''}=\dot{\phi }i^{'}+\dot{\psi }sin\phi j^{'}+\dot{\psi }cos\phi k^{'}
The rate of change of momentum is given as
\mathbf{dH/dt}=I_{wx}\dot{\omega_{x}}i^{'}+I_{wy}\dot{\omega_{y}}j^{'}+I_{wz}\dot{\omega_{z}}k^{'}+\mathbf{\omega_{axis}}\times\mathbf{H}
This point is where I can not get the same equation in the book for rate of change of momentum. The rate of change of momentum given in fixed intertial frame is:
\mathbf{dH/dt}=\left (I_{wx}\ddot \phi- I_{wy}\Omega \dot\psi \right )i^{'''}+I_{wy}\ddot \beta j^{'''}+\left (I_{wy}\Omega\dot \phi+ I_{wx}\ddot\psi \right ) k^{'''}
Probably I am missing a simple point but I could not find what it is.
Last edited by a moderator: