matematikuvol
- 190
- 0
In book Modern theory of critical phenomena author Shang - Keng Ma in page 17.
\sigma_{\vec{k}}=V^{-\frac{1}{2}}\int d^3\vec{x}e^{-i\vec{k}\cdot\vec{x}}\sigma(\vec{x})
\sigma(\vec{x})=V^{-\frac{1}{2}}\sum_{\vec{k}}e^{i\vec{k}\cdot \vec{x}}\sigma_{\vec{k}}
Is this correct? How can inversion of continual FT be discrete FT? Thanks for your answer.
\sigma_{\vec{k}}=V^{-\frac{1}{2}}\int d^3\vec{x}e^{-i\vec{k}\cdot\vec{x}}\sigma(\vec{x})
\sigma(\vec{x})=V^{-\frac{1}{2}}\sum_{\vec{k}}e^{i\vec{k}\cdot \vec{x}}\sigma_{\vec{k}}
Is this correct? How can inversion of continual FT be discrete FT? Thanks for your answer.