Evaluate Integral: (1/2(x)^2)(tan^-1x)+(-9cosx)+(x)

  • Thread starter Thread starter sapiental
  • Start date Start date
  • Tags Tags
    Integral
sapiental
Messages
110
Reaction score
0
evaluate the integral ((x/1+x^2)+9sinx+(1/lnx))

solution:

integral ((x)(1/1+x^2)+9sinx+(1/lnx))

= (1/2(x)^2)(tan^-1x)+(-9cosx)+(x)


am I close? Thanks!
 
Physics news on Phys.org
Is that:

\int \left( \frac{x}{1+x^2} + 9 \sin x + \frac{1}{\ln x} \right) dx

? If so, that's just three questions in one, since you can break it up into the sum of the integrals of the three terms. The first and second are easy (use substitution on the first), but the last doesn't have a nice closed form.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top