Evaluate Integral: Find Derivative of Exp(-t^2)

  • Thread starter Thread starter ehrenfest
  • Start date Start date
  • Tags Tags
    Integral
ehrenfest
Messages
2,001
Reaction score
1

Homework Statement


How would you evaluate

\frac{d}{dx} \int _{x}^{tanx}exp(-t^2)dt ?


Homework Equations





The Attempt at a Solution



So I think you want to substitute variables int order to get the lower limit a constant and the upper limit a variable with constant derivative. Then we just take out the derivative operator and the integral sign. I just cannot think of the right substitution...
 
Last edited:
Physics news on Phys.org
let \int exp(-t^2)dt = F(t),

then, \int _{x}^{tanx}exp(-t^2)dt =<br /> F(tanx)-F(x)

then use the chain rule to differentiate, since you already know the derivative of F(x).
 
That works. Thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
22
Views
3K
Replies
105
Views
4K
Replies
12
Views
2K
Replies
8
Views
2K
Replies
3
Views
1K
Replies
15
Views
2K
Replies
6
Views
1K
Back
Top