Evaluate real integral using residue theorem, where did I go wrong?

Poopsilon
Messages
288
Reaction score
1
Edit: Never mind I found my error, moderator can lock this.

Homework Statement



Evaluate the integral \int_0^{\pi} \frac{dt}{(a+cost)^2} for a > 1.

Homework Equations



\int_0^{\pi}\frac{dt}{(a+cost)^2} = \pi i\sum_{a\epsilon \mathbb{E}}Res(f;\alpha)

Where \mathbb{E} is the open unit disk, and f(z) = \frac{1}{iz(a+\frac{1}{2}(z+\frac{1}{z}))^2}.

The Attempt at a Solution



f(z) = \frac{1}{iz(a+\frac{1}{2}(z+\frac{1}{z}))^2} = \frac{1}{iz\frac{(z^2 + 2az + 1)^2}{4z^2}} = \frac{-4iz}{(z^2 + 2az + 1)^2} = \frac{-4iz}{[(z + a + \sqrt{a^2 - 1})(z + a - \sqrt{a^2 - 1})]^2}

Thus f has two roots of multiplicity two. It's fairly easy to see that only the root z = -a + \sqrt{a^2 - 1} lies inside the open unit disk for a > 1, thus we set b = -a + \sqrt{a^2 - 1} and obtain:

\pi i\sum_{\alpha\epsilon\mathbb{E}}Res(f;\alpha) = Res(f;b) = lim_{z\rightarrow b}\frac{d}{dz}\frac{-4iz(z+a-\sqrt{a^2 - 1})^2}{(z + a + \sqrt{a^2 - 1})^2(z + a - \sqrt{a^2 - 1})^2} = lim_{z\rightarrow b}4\pi\frac{d}{dz}\frac{z}{(z+a+\sqrt{a^2 - 1})^2} = lim_{z\rightarrow b}4\pi \frac{a + \sqrt{a^2 - 1} -z}{(z + a + \sqrt{a^2 - 1})^3}

From here I take the limit and after simplification obtain \frac{\pi\sqrt{a^2 - 1}}{a^3}. Yet the book says my answer should be \frac{\pi a}{(a^2 - 1)\sqrt{a^2 - 1}}. Where have I gone wrong? Thanks.
 
Last edited:
Physics news on Phys.org
Explain your mistake so that everyone can learn from it!
 
It wasn't really a mistake in my understanding of the theory it was just a sign error. I was accidentally plugging in -b instead of b.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top