Piney1
- 3
- 0
Homework Statement
Change the order of integration and evaluate the following double integral:
I = {\int_0^{1} \left({\int\limits_{y}^{1}<br /> 30 y\sqrt{1+x^3} \mathrm{d}x }\right) {\mathrm{d}y}
So thenn i did
= 30 \int_0^{1} \sqrt{1+x^3} \left({\int_0^{x} y \mathrm{d}y}\right) \mathrm{d}x
= 30 \int_0^{1} \sqrt{1+x^3} \left(\frac{x^2}{2} \right) \mathrm{d}x \end{align}
using integration by parts...
for \sqrt{1+x^3}
let u = \sqrt{1+x^3} \qquad du= \frac{1}{2} \left(\sqrt{1+x^3}\right) 3x^2 = \frac{3x^2}{2\sqrt{1+x^3}} \qquad dv = dx \qquad v = x
Thus!
= x \sqrt{1+x^3} - \int \frac{3x^3}{2\sqrt{1+x^3}} \mathrm{d}x
after that... i have no clue what to do. a lil help? thanks!

am i on the right track though?