Bill Foster
- 334
- 0
Homework Statement
Evaluate the expectation value of p and p² using the momentum-space wave function
Homework Equations
Momentum-space wave function:
\sqrt{\frac{d}{\hbar\sqrt{\pi}}}e^{\frac{-\left(p'-\hbar k\right)^2d^2}{2\hbar^2}}
The Attempt at a Solution
I can get \langle p \rangle, so that's not a problem.
\langle p^2 \rangle = \int_{-\infty}^{\infty}\sqrt{\frac{d}{\hbar\sqrt{\pi}}}e^{\frac{-\left(p'-\hbar k\right)^2d^2}{2\hbar^2}}p'^2\sqrt{\frac{d}{\hbar\sqrt{\pi}}}e^{\frac{-\left(p'-\hbar k\right)^2d^2}{2\hbar^2}}dp'
= \frac{d}{\hbar\sqrt{\pi}}\int_{-\infty}^{\infty}e^{\frac{-\left(p'-\hbar k\right)^2d^2}{2\hbar^2}}p'^2e^{\frac{-\left(p'-\hbar k\right)^2d^2}{2\hbar^2}}dp'
= \frac{d}{\hbar\sqrt{\pi}}\int_{-\infty}^{\infty}e^{\frac{-\left(p'-\hbar k\right)^2d^2}{\hbar^2}}p'^2dp'
This has the form:
\int_{-\infty}^{\infty}e^{-a\left(x-b\right)^2}xdx = b\sqrt{\frac{\pi}{a}}
So I'll integrate it by parts:
u=p'
du=dp'
dv=e^{\frac{-\left(p'-\hbar k\right)^2d^2}{\hbar^2}}p' dp'
v=\hbar k\frac{\hbar}{d}\sqrt{\pi}
p'\hbar k\frac{\hbar}{d}\sqrt{\pi}|_{-\infty}^{\infty}-\int_{-\infty}^{\infty}\hbar k\frac{\hbar}{d}\sqrt{\pi}dp'
=p'\hbar k\frac{\hbar}{d}\sqrt{\pi}|_{-\infty}^{\infty}-p'\hbar k\frac{\hbar}{d}\sqrt{\pi}|_{-\infty}^{\infty}=0
But it should be:
\langle p^2 \rangle = \frac{\hbar^2}{2d^2}+\left(\hbar k\right)^2
What am I doing wrong?