Even and Odd Eigenfunctions in Sturm-Liouville Problems

  • Thread starter Thread starter Tomath
  • Start date Start date
  • Tags Tags
    even
Tomath
Messages
8
Reaction score
0

Homework Statement


We are given the following Sturm-Liouville eigenvalueproblem:
(p(x)y')' + r(x)y = \lambday
y(-a) = y(a) = 0

on a symmetrisch interval I = [-a, a]. About p(x) and r(x) we are given that p(-x) = p(x) < 0 and r(-x) = r(x) \forallx \in [-a, a]. Show that every eigenfunction is either even or odd.


Homework Equations


-


The Attempt at a Solution


I was thinking of using the fact that for two different eigenvalues with their corresponding eigenfunctions w(x), v(x) the following identity holds:

$$\int_{-a}^{a} v(x) w(x) dt = 0$$

which hopefully implies that v(x) w(x) is an odd function. However, this doesn't really seem to work because both v(x) and w(x) can be even and then the identity above still holds (even though v(x) w(x) is even).

My second thought is trying to get some expression like the following:
$$\int_{-a}^{a} p'(x) w(x) dt = 0$$ or $$\int_{-a}^{a} r(x) w(x) dt = 0$$ since that would imply that w(x) is either even or odd. However I cannot seem to get any expression like that.

What am I missing in this problem?
 
Physics news on Phys.org
Try changing variables from x to -x. Use that to show that if y(x) is a solution, then y(-x) is also a solution.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top