Expectation of a Random Variable

Firepanda
Messages
425
Reaction score
0
I know the E[X] = Integral between [-inf,inf] of X*f(x) dx

Where X is normally distributed and f(x) is the PDF

How do I find the expectation of X4?

Bare with me because I'm useless in Latex

So far what I've done is written the integral as Integral between [-inf,inf] of X4*f(x) dx

and I started to subsitute u = exp{-x2/2t}

So now I have Integral between [-inf,inf] of -tX3*u dx

I really don't think this is correct.. I'm trying to follow the same way my lecturer did it for the expectation of X2, but at that statge he started to integrate by parts, yet mine doesn't look like that and it's essentially the same!

Can anyone help?

Thanks
 
Physics news on Phys.org
Firepanda said:
I know the E[X] = Integral between [-inf,inf] of X*f(x) dx

Where X is normally distributed and f(x) is the PDF

How do I find the expectation of X4?

Bare with me because I'm useless in Latex

So far what I've done is written the integral as Integral between [-inf,inf] of X4*f(x) dx

and I started to subsitute u = exp{-x2/2t}

So now I have Integral between [-inf,inf] of -tX3*u dx

I really don't think this is correct.. I'm trying to follow the same way my lecturer did it for the expectation of X2, but at that statge he started to integrate by parts, yet mine doesn't look like that and it's essentially the same!

Can anyone help?

Thanks

The standard way of dealing with this type of problem is to note that d\left(e^{-x^2/2}\right) = - x e^{-x^2/2} \, dx, and use that in integration by parts.

RGV
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top