Reshma
- 749
- 6
I have a wavefunction given by:
\psi = \sqrt{\frac{2}{L}}\sin \frac{n\pi x}{L}
With boundary conditions 0<x<L.
When I compute the expectation value for the momentum like this:
\overline{p_x} = \int_0^L \sqrt{\frac{2}{L}}\sin \frac{n\pi x}{L} \left(-i\hbar \frac{\partial}{\partial x}\right)\sqrt{\frac{2}{L}}\sin \frac{n\pi x}{L} dx
On evaluation I get:
\frac{2n\pi \hbar}{iL^2}\left[\frac{L}{2n\pi}\sin^2 \frac{n\pi x}{L}\right]_0^L = 0
Why is the expectation value of the momentum Zero?
\psi = \sqrt{\frac{2}{L}}\sin \frac{n\pi x}{L}
With boundary conditions 0<x<L.
When I compute the expectation value for the momentum like this:
\overline{p_x} = \int_0^L \sqrt{\frac{2}{L}}\sin \frac{n\pi x}{L} \left(-i\hbar \frac{\partial}{\partial x}\right)\sqrt{\frac{2}{L}}\sin \frac{n\pi x}{L} dx
On evaluation I get:
\frac{2n\pi \hbar}{iL^2}\left[\frac{L}{2n\pi}\sin^2 \frac{n\pi x}{L}\right]_0^L = 0
Why is the expectation value of the momentum Zero?