Explanation of acceleration of a ball bouncing up and down on the ground

AI Thread Summary
The discussion centers on the acceleration of a ball bouncing vertically, particularly at the moment of impact with the ground. It highlights that the ball experiences a sudden change in acceleration, switching to the opposite sign upon hitting the ground. The conversation explores the complexities of modeling this scenario, including the implications of perfect versus non-ideal collisions and the role of the ball's spring constant. Participants discuss how to express the relationship between time, displacement, and acceleration, emphasizing the need for precise definitions and relationships in the equations used. Ultimately, the conversation seeks clarity on the behavior of acceleration during the ball's bounce and the conditions under which it changes direction.
city25
Messages
7
Reaction score
0
I am from HK. Hope you guys can understand my poor English! ^^
actually, this is not for my homework but my preparation for the public exam.

Homework Statement


The situation is that a ball bouncing up and down on the ground in vertical direction.
The question is to choose which graphs best describes the variation of its acceleration a.
It is a MC-question. Althought I know the ans., I want to have a full explanation but I am not sure if I am correct.

Homework Equations


No

The Attempt at a Solution


We all know that there is a sudden change in acceleration to the opposite sign at the moment that the ball hits ground. I want to explain it. Please comment on my explanation.


  u↓ ↑v
   O    ↓+ve
-------
  ground

where u ≥ -v
ps. the ball with mass m.Let's consider momentum.
impact force
= (mv - mu)/t
≥ [m(-u) - mu]/t (since v ≥ -u)
= -2mu/t which is negativenet Force = ma
impact force - mg = ma
ma ≤ -2mu/t - mg
a ≤ -2u/t - g

hence, when the ball hits the ground, it experiences acceleration in the sign opposite to gravitational field.

Am I correct?
Can I explain in other way(s)? or simplier way(s)?
I want explanation as much as possible.
 
Last edited:
Physics news on Phys.org
Well, for a perfect collision between an immovable ground and perfectly elastic ball, the acceleration would be infinite, and all you need are the conservation laws. For a non-ideal situation, you have to consider the ball as some sort of spring, you can get an expression for the time the impulse will be delivered based on the spring constant (or equation).

The rate at which the acceleration changes direction--which, I think, is what you want to find out--depends sensitively on how you're modeling/thinking about the ball.
 
zhermes said:
Well, for a perfect collision between an immovable ground and perfectly elastic ball, the acceleration would be infinite, and all you need are the conservation laws. For a non-ideal situation, you have to consider the ball as some sort of spring, you can get an expression for the time the impulse will be delivered based on the spring constant (or equation).

The rate at which the acceleration changes direction--which, I think, is what you want to find out--depends sensitively on how you're modeling/thinking about the ball.
So, you mean that there is different explanation when it is in different cases?
Is there any wrong or improper concept?

How about this?
Since t ∝ kx where k is the spring constant and x is displacement (how should I difine x?)
=> t = μkx where μ is a constant.

hence, a ≤ -2u/μkx - g
since x change from -ve to +ve, and then -ve, acceleration changes its direction "gradually".

is it correct?
 
oh, i must make a mistake

now, let v be the velocity of the ball when it hits ground
impluse
= (mv - mu)/t

net Force = ma
impluse - mg = ma
ma = (mv - mu)/t - mg
a = (v - u)/t - g

since t ∝ 1/k => t = μ/k where k is spring constant, μ is a constant
hence, a = (v - u)k/μ - g
da/dt = (k/μ)(dv/dt) - uk/μ - g

When the ball hits ground,
speed of the ball ↓,
=> (dv/dt) is -ve.
=> da/dt is also -ve
=> slope of the a-t graph is -ve

when the ball leaves ground,
speed of the ball ↑,
=> (dv/dt) is +ve.
=> da/dt may become +ve
=> slope of the a-t graph may be +ve

however, it seems that i can't say "may be +ve" in this case, i should say "must be +ve". i don't know whether i made something wrong before. If no, how should I deduce "must"?
 
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top