I Exponential equation with logs

  • I
  • Thread starter Thread starter Dank2
  • Start date Start date
  • Tags Tags
    Exponential
Dank2
Messages
213
Reaction score
4
How can i continue from here, answer is x=0,-2

IMG_4519[894].JPG
 
Mathematics news on Phys.org
You lost a factor 4 for 2x 2x.

I would make some common factors of 10x and from there on say that you can see the solution. There is no nice way to solve this as far as I can see.
 
  • Like
Likes Dank2
mfb said:
You lost a factor 4 for 2x 2x.

I would make some common factors of 10x and from there on say that you can see the solution. There is no nice way to solve this as far as I can see.
You mean write down 25 as 10log1025?
D356CA16-1260-4F12-83CB-98BEBAAF25EC.jpeg
 
Last edited:
dont mind the t=0, since it cannot be.
66EFA9ED-15A7-4120-BB0D-5871FF852226.jpeg
 
Answers are x=0, x=-1.
Anyone have a clue how to show it ? it doesn't have to be a proof.
 
Dank2 said:
Answers are x=0, x=-1.
Anyone have a clue how to show it ? it doesn't have to be a proof.
If the equation is:
$$\log_{10}\big[25^{x+1}+4^{x+1}-19\cdot 10^x\big]=\log_{10}\big[10^{x+1}\big]$$,
then with some algebra, you can reduce it down to:
$$
25^{x+1}+4^{x+1}=\frac{29}{10}\cdot 10^{x+1}
$$
and can easily see ##x=0## is a solution and if you plug in ##x=-2##, confirm -2 is a solution also.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top