I Exponential Operators: Inverting, Rearranging, Expanding

dyn
Messages
774
Reaction score
63
If I rearrange an equation invoving exponentials of operators and I take ex to the opposite side of the equation it becomes e-x. What happens if I try to take eA to the opposite side ? I know a exponential of operators can be expanded as a Taylor series which involves products of matrices but can this be inverted ?
 
Physics news on Phys.org
Yes, ##(e^{A})^{-1} = e^{-A}##
 
  • Like
Likes yungboss
Thanks. Are there any conditions for that to apply ? To invert an ordinary matrix requires a non-zero determinant. Are there any conditions on the operator/matrix in the exponential ? Also when taking the exponential over to the other side of the equation I presume order matters in case any operators do not commute ?
 
dyn said:
Thanks. Are there any conditions for that to apply ?

No. As long as ##e^A## exists (which it always does if ##A## is a bounded operator), then the above applies.

Also when taking the exponential over to the other side of the equation I presume order matters in case any operators do not commute ?

Yes.
 
  • Like
Likes dyn
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top