Expressing Feynman Green's function as a 4-momentum integral

AI Thread Summary
The discussion revolves around the confusion regarding the classification of (z', p) as a 4-vector, particularly in the context of Lorentz covariance. Participants highlight that while traditional 4-vectors are well-defined, the introduction of new variables raises questions about their legitimacy. The conversation touches on the role of the restricted Lorentz group, which allows the use of the step function ##\theta(x^0 - y^0)## to maintain time orientation. Ultimately, the integration variables are acknowledged, but their interpretation as 4-vectors remains contentious. The discussion emphasizes the need for clarity in how these variables are treated within the framework of momentum space.
realanswers
Messages
13
Reaction score
0
Homework Statement
N/A
Relevant Equations
N/A
1678463170187.png


I am a bit confused on how we can just say that (z',p) form a 4-vector. In my head, four vectors are sacred objects that are Lorentz covariant, but now we introduced some new variable and say it forms a 4-vector with momentum. I understand that these are just integration variables but I still do not see how this is okay. The interpretation of z' now is different.
 
Physics news on Phys.org
realanswers said:
I am a bit confused on how we can just say that (z',p) form a 4-vector. In my head, four vectors are sacred objects that are Lorentz covariant, but now we introduced some new variable and say it forms a 4-vector with momentum. I understand that these are just integration variables but I still do not see how this is okay. The interpretation of z' now is different.
But where did it come from? ##\theta(x^0 - y^0)##, right? The restricted Lorentz group (identity-connected part) preserves time orientation, so it's ok to use ##\theta(x^0 - y^0)## in that circumstance. The rest just involves expressing it in momentum space.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Thread 'Stacked blocks & pulley system'
I've posted my attempt at a solution but I haven't gone through the whole process of putting together equations 1 -4 yet as I wanted to clarify if I'm on the right path My doubt lies in the formulation of equation 4 - the force equation for the stacked block. Since we don't know the acceleration of the masses and we don't know if mass M is heavy enough to cause m2 to slide, do we leave F_{12x} undetermined and not equate this to \mu_{s} F_{N} ? Are all the equations considering all...
Back
Top