Expressing Feynman Green's function as a 4-momentum integral

Click For Summary
The discussion revolves around the confusion regarding the classification of (z', p) as a 4-vector, particularly in the context of Lorentz covariance. Participants highlight that while traditional 4-vectors are well-defined, the introduction of new variables raises questions about their legitimacy. The conversation touches on the role of the restricted Lorentz group, which allows the use of the step function ##\theta(x^0 - y^0)## to maintain time orientation. Ultimately, the integration variables are acknowledged, but their interpretation as 4-vectors remains contentious. The discussion emphasizes the need for clarity in how these variables are treated within the framework of momentum space.
realanswers
Messages
13
Reaction score
0
Homework Statement
N/A
Relevant Equations
N/A
1678463170187.png


I am a bit confused on how we can just say that (z',p) form a 4-vector. In my head, four vectors are sacred objects that are Lorentz covariant, but now we introduced some new variable and say it forms a 4-vector with momentum. I understand that these are just integration variables but I still do not see how this is okay. The interpretation of z' now is different.
 
Physics news on Phys.org
realanswers said:
I am a bit confused on how we can just say that (z',p) form a 4-vector. In my head, four vectors are sacred objects that are Lorentz covariant, but now we introduced some new variable and say it forms a 4-vector with momentum. I understand that these are just integration variables but I still do not see how this is okay. The interpretation of z' now is different.
But where did it come from? ##\theta(x^0 - y^0)##, right? The restricted Lorentz group (identity-connected part) preserves time orientation, so it's ok to use ##\theta(x^0 - y^0)## in that circumstance. The rest just involves expressing it in momentum space.
 
(a) The polarisation pattern is elliptical with maximum (1,1) and minimum (-1,-1), and anticlockwise in direction. (b) I know the solution is a quarter-wave plate oriented π/4, and half-wave plate at π/16, but don't understand how to reach there. I've obtained the polarisation vector (cos π/8, isin π/8) so far. I can't find much online guidance or textbook material working through this topic, so I'd appreciate any help I can get. Also, if anyone could let me know where I can get more...

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
995
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K