odolwa99
- 85
- 0
Homework Statement
Having a bit of trouble with this one, specifically the answer of (ii) (Q. diagram included as attachment). Can anyone help?
Many thanks.
Q. In the given diagram, the angles prq & pqs are both right angles. The \anglerpq = X, \angleqps = Y, |pr| = a & |ps| = b. (i) By considering the triangles prq & psq, show that b = \frac{a}{cosXcosY}, (ii) If X = 45o & Y = 30o, express the area of \trianglepqs in terms of a. Give your answer in surd form
The Attempt at a Solution
Attempt: (i): cos = \frac{adjacent}{hypotenuse}
Thus, cosX = \frac{a}{|pq|} & cosY = \frac{|pq|}{b}
Therefore, cosX\cdotcosY = \frac{a}{|pq|}\cdot\frac{|pq|}{b} = \frac{a}{b}
And so, cosX\cdotcosY = \frac{a}{b} => b = \frac{a}{cosX\cdot cosY}
(ii) Area of triangle: \frac{1}{2}b\cdot|pq|\cdot sin30^o
1st, note that: cos45o = \frac{1}{\sqrt{2}} & cos30o = \frac{\sqrt{3}}{2}
Thus, b = \frac{a}{cosX\cdot cosY} => \frac{a}<br /> {1/\sqrt{2}\cdot\sqrt{3}/2} => \frac{a}{\sqrt{3}/2\sqrt{2}} => \frac{2\sqrt{2}a}{\sqrt{3}}
2nd, note that: cosX = \frac{a}{|pq|} => |pq| = \frac{a}{cos45^o} => |pq| = \frac{a}{1/\sqrt{2}} => |pq| = \sqrt{2}a
Now, \frac{1}{2}b\cdot|pq|\cdot sin30^o = \frac{1}{2}\cdot\frac{2\sqrt{2}a}{\sqrt{3}}\cdot \sqrt{2}a\cdot\frac{1}{2} => \frac{(2\sqrt{2}a)(\sqrt{2}a)}{4\sqrt{3}} => \frac{(\sqrt{2}a)(\sqrt{2}a)}{2\sqrt{3}} => \frac{2a^2}{2\sqrt{3}} => \frac{a^2}{\sqrt{3}}
Ans.: (From textbook): \frac{a^2\sqrt{3}}{3}