Expression with two vectors and del operator

BOYLANATOR
Messages
193
Reaction score
18

Homework Statement


(A.∇)B



What does this mean and how do I go about trying to expand this (using cartesian components)?
 
Physics news on Phys.org
BOYLANATOR said:

Homework Statement


(A.∇)B

What does this mean and how do I go about trying to expand this (using cartesian components)?
Well, \displaystyle \vec{\text{A}}\cdot\vec{\nabla}=\text{A}_x\,\frac{ \partial}{\partial x}+\text{A}_y\,\frac{ \partial}{\partial y}+\text{A}_z\,\frac{ \partial}{\partial z}\ .<br />

So that \displaystyle \left(\vec{\text{A}}\cdot\vec{\nabla}\right) \vec{\text{B}}=\text{A}_x\,\frac{ \partial\vec{\text{B}}}{\partial x}+\text{A}_y\,\frac{ \partial\vec{\text{B}}}{\partial y}+\text{A}_z\,\frac{ \partial\vec{\text{B}}}{\partial z}\ .<br />
 
Of course. It was the order (A.∇) rather than (∇.A) that confused me but now I realize that these are obviously equivalent. Thanks
 
BOYLANATOR said:
Of course. It was the order (A.∇) rather than (∇.A) that confused me but now I realize that these are obviously equivalent. Thanks

Actually that's wrong isn't it?
If the order is reversed you find the derivatives of each component of A. In the problem case though the derivation is carried out on the components of B. I hope this is right as it makes sense in my head.
 
Yes, it's correct. The whole expression is called the derivative of B along A.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top