External field applied to Harmonic Oscillator

unscientific
Messages
1,728
Reaction score
13

Homework Statement



For a particle of charge ##q## in a potential ##\frac{1}{2}m\omega^2x^2##, the wavefunction of ground state is given as ##\phi_0 = \left( \frac{m\omega }{\pi \hbar} \right)^{\frac{1}{4}} exp \left( -\frac{m\omega}{2\hbar} x^2 \right)##.

Now an external electric field ##E## is applied.

Part (a): Find the new energies and wavefunction of the ground state.

Part (b): Find the probability that the particle will be in the ground state of the new potential.

Homework Equations


The Attempt at a Solution



The Hamiltonian now becomes:

H = \frac{p^2}{2m} + \frac{1}{2} m\omega^2 \left(x - \frac{qE}{m\omega^2} \right)^2 - \frac{q^2E^2}{2m\omega^2}

Thus the shift in energy is ## \frac{q^2E^2}{2m\omega^2} ##. New energies are given by: ##E_n = (n+1)\hbar \omega - \frac{q^2E^2}{2m\omega^2} ##.

This represents a displaced harmonic oscillator, with eigenfunction:

\phi_0 \space ' = \left( \frac{m\omega}{\hbar \pi} \right)^{\frac{1}{4}} e^{-\alpha (x-\frac{qE}{m\omega^2})^2 }

Part(b)

Do I overlap this state with the old one and integrate?
 
Last edited:
Physics news on Phys.org
Edit: yes
Edit take two: may I suggest to edit for typos not to change completely the questions?
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top